

journals.uoz.edu.krd

Available online at sjuoz.uoz.edu.krd

Vol. 13, No.4 pp590-599October-December,2025

p-ISSN: 2663-628X

e-ISSN: 2663-6298

590

ENHANCING NONLINEAR EQUATION SOLUTIONS THROUGH THE COMBINATION OF

VARIANT NEWTON’S AND HALLEY’S METHODS

Kazhal H. Mohammed Ali1, *, Bayda Gh. Fathi1

1Department of Mathematics, College of Science, University of Zakho, Zakho, Kurdistan Region, Iraq

*Corresponding author email: kazhal.mohammed@uoz.edu.krd

Received: 24 May 2025 Accepted:21 Jul 2025 Published: 08 Oct 2025 https://doi.org/10.25271/sjuoz.2025.13.4.1594

ABSTRACT:

This work presents a new iterative method for solving single-variable nonlinear equations. The method achieves ninth-order

convergence with just three derivative evaluations per step, offering both accuracy and lower computational cost. Unlike

slower bracketing methods, it builds on faster open methods, though these may sometimes fail to converge. By blending

ideas from Newton's and Halley's methods, the new approach provides strong performance, as shown by a detailed

convergence analysis and MATLAB tests. Compared to existing techniques, it finds solutions in fewer steps and less time,

making it especially effective for difficult nonlinear problems

KEYWORDS: Newton’s Method, Variant of Newton’s Method, Halley’s Method, Efficiency Index, Nonlinear

Equations.

1. INTRODUCTION

 Iterative root‐finding algorithms are indispensable across

engineering, physics, and applied mathematics, underpinning

models from nonlinear structural analysis to parameter

estimation in dynamical systems (Soomro et al., 2023; Naseem

et al., 2022). Bracketing methods, such as the bisection

algorithm, guarantee convergence, but only at a linear rate,

making them impractical for high-precision requirements

(Goodman et al., 2017) . Open methods, such as Newton’s

method (NM), achieve quadratic convergence but may diverge if

the initial estimate is poor or if derivative evaluations are

expensive (Kumar et al., 2013).Various mathematical models

have been developed for solving differential equations, including

the Successive Approximation Method (Sabali et al., 2021), the

Adomian Decomposition Method (Azzo et al., 2022), and the

Residual Power Series Method (Manaa et al., 2021).

 Halley’s method (HM) mitigates this by incorporating

second derivatives to attain cubic convergence, but the extra

derivative computation can outweigh its faster convergence in

practice(Elhasadi, 2007). To reduce sensitivity to starting guesses

while retaining high convergence order, variants such as the

Weerakoon–Fernando third‐order scheme (Weerakoon et al.,

2000) and sixth‐order Halley‐type modifications (Noor et al.,

2007) have been proposed; however, each entails trade‐offs

between per‐iteration cost and overall efficiency. Silalahi et al.

(2017), introduced a method, known as NIH, that combines the

Halley method, the Newton method, and the Newton inverse

method.

 In this paper, we propose the Variant Newton–Halley

Method (VNHM), which combines a third-order Newton-type

predictor with a Halley-type corrector to achieve ninth-order

* Corresponding author

This is an open access under a CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/)

convergence. Moreover, we prove VNHM’s convergence order

and compute its efficiency index via a detailed Taylor series

analysis. Furthermore, we demonstrate through MATLAB

experiments on eight benchmark functions that VNHM

consistently reduces the number of iterations and CPU time

compared to Newton’s method, Halley’s method, and the

Weerakoon–Fernando variant. Even though VNHM can reach

very high accuracy in just a few steps when you can cheaply

compute its needed derivatives, it does become overly complex

and expensive if those derivatives are hard to get or noisy.

Because it relies on calculating both first- and second-order

derivatives every time, and its guaranteed success only applies

when you start fairly close to the proper solution, it is less well

suited to cases where derivative information is costly, unreliable,

or when you only need a rough answer. The results were

compared with those obtained from the methods in (Silalahi et

al., 2017; Weerakoon et al., 2000).

 The remainder of this paper is organized as follows. Section

2 reviews NM, HM, Weerakoon–Fernando variant, and NIH

before introducing VNHM. Section 3 develops the convergence

analysis. Section 4 describes the test functions and their known

roots. Section 5 presents numerical comparisons of iteration

counts, execution times, and accuracy. Section 6 concludes and

outlines directions for extending VNHM to complex‐root

problems.

Iterative Methods:

 This section will introduce the fundamental ideas behind

the NM, HM, VNM, and NIH. Furthermore, the VNHM will be

presented.

http://journals.uoz.edu.krd/
http://sjuoz.uoz.edu.krd/
file:///C:/Users/botan/AppData/Local/Microsoft/Windows/INetCache/IE/5QU9QIY1/kazhal.mohammed@uoz.edu.krd
https://doi.org/10.25271/sjuoz.2025.13.4.1594
https://creativecommons.org/licenses/by-nc-sa/4.0/

Ali and Fathi/ Science Journal of University of Zakho, 13(4), 590-599 October-December, 2025

591

Newton’s Method (NM)

 For the nonlinear scalar equation ᶂ(ᶍ𝑖) = 0, NM is among

the most effective root-finding methods (Madhu et al., 2016).

The method's quadratic convergence rate makes it likely the most

widely used approach for solving nonlinear equations. However,

if poor initial assumptions are made, it can occasionally be

weakened. However, to use it as a reference point, it needs to be

calculated as a function's derivative, which is not always simple

or even possible, or it cannot be expressed in terms of an

elementary function (McDonough, 2007;Kusni et al., 2016).

Newton's method may converge more quickly than any other

method, but performance comparison requires taking both

convergence speed and cost into account (Azure et al., 2019).

The general form of the NM is:

ᶍ𝑖+1 = ᶍ𝑖 −
ᶂ(ᶍ𝑖)

ᶂ′(ᶍ𝑖)
. 𝑖 = 0,1,2, …. (1)

Algorithm (NM) (Tasiu et al., 2020)

Given a sufficiently smooth function ᶂ: 𝐷 ⊆ ℝ ⟶ ℝ with

ᶂ′(ᶍ𝑖) ≠0 on 𝐷.

Input: Initial approximation (ᶍ0) ∊ 𝐷, error tolerance (𝑇𝑜𝑙 >

0), and the maximum number of iterations (N).

Output: An approximation root, ᶍ𝑖+1, or a message of failure if

the tolerance is not met within 𝑁 iterations.

Step 1: Set i = 0.

Step 2: Repeat until |ᶂ′(ᶍ𝑖)| < 𝑇𝑜𝑙 or the maximum number of

iterations is reached:

compute ᶍ𝑖+1 = ᶍ𝑖 −
ᶂ(ᶍ𝑖)

ᶂ′(ᶍ𝑖)
 .

Step 3: If |ᶍ𝑖+1 − ᶍ𝑖| < Tol, then return ᶍ𝑖+1 as the approximate

solution and stop.

Step 4: Set 𝑖 = 𝑖 + 1 and go to step 2.

A Variant of Newton’s Method (VNM)

 In 2000, Weerakoon and Fernando showed that the method

with third-order convergence is the outcome of deriving NM,

which entails an indefinite integral of the function's derivative

and an approximate rectangle for the relevant area (Weerakoon

et al., 2000) . This modification reduces the local truncation error

by using a trapezoid rather than a rectangle to approximate this

indefinite integral. Iterations can be performed without the need

to compute the function's second or higher derivatives, which is

the VNM's most significant feature. The general form of the

VNM is:

𝑦𝑖+1 = ᶍ𝑖 −
2ᶂ(ᶍ𝑖)

[ᶂ′(ᶍ𝑖)+ᶂ′(ᶍ𝑖+1)]
. 𝑖 = 0,1,2, …. (2)

Here ᶍ𝑖+1is obtained using the standard Newton iteration.

Algorithm (VNM)

 Given a function ᶂ: 𝐷 ⊆ ℝ ⟶ ℝ, assuming ᶂ ∊ 𝐶1(𝐷)

With a simple root 𝜈 ∊ 𝐷 of ᶂ, so ᶂ(ᶍ𝑖) =0, ᶂ′(ᶍ𝑖) ≠0.

Input: Initial approximation ᶍ0 ∊ 𝐷, error tolerance 𝑇𝑜𝑙 > 0,

optional maximum number of iterations N.

Output: Return ᶍ𝑖+1 as the root approximation or return a ‘no

convergence’ when the tolerance criterion is not met within 𝑁

Iterations.

Step 1: Set i = 0, calculate the first Newton iteration:

ᶍ1 = ᶍ0 −
ᶂ(ᶍ0)

ᶂ′(ᶍ0)
.

Step 2: While 𝑖 < 𝑁 repeat:

Step 3: Compute the predictor, which was already computed in

Step 1:

ᶍ𝑖+1 = ᶍ𝑖 −
ᶂ(ᶍ𝑖)

ᶂ′(ᶍ𝑖)
.

Step 4: Calculate the corrector:

𝑦𝑖+1 = ᶍ𝑖 −
2ᶂ(ᶍ𝑖)

[ᶂ′(ᶍ𝑖)+ᶂ′(ᶍ𝑖+1)]
.

Step 5: If |𝑦𝑖+1 − 𝑦𝑖| < Tol, then return y𝑖+1 and terminate.

Step 6: Set 𝑖 = 𝑖 + 1and go to step 3.

Halley’s Iteration Method (HM)

 Halley’s method is a third‐order root‐finding algorithm

closely related to Newton’s method (NM). Whereas NM uses the

tangent‐line approximation of ᶂ to achieve quadratic

convergence, Halley’s method incorporates second‐derivative

information to accelerate convergence to cubic order (Scavo et

al., 1995). Given the current iteration ᶍ𝑖, Halley’s update is:

ᶍ𝑖+1 = ᶍ𝑖 −
2ᶂ(ᶍ𝑖)ᶂ′(ᶍ𝑖)

2(ᶂ′(ᶍ𝑖))
2

−ᶂ(ᶍ𝑖)ᶂ′′(ᶍ𝑖)
 . 𝑖 = 0,1,2, …. (3)

Both NM and HM belong to a wider family of explicit iterative

schemes that exploit successively higher derivatives to improve

convergence order(Yasir Abdul-Hassan, 2016).

Algorithm 2.3. (HM) (Thota et al., 2023)

Given a sufficiently smooth function ᶂ: 𝐷 ⊆ ℝ ⟶ ℝ, assuming

ᶂ ∊ 𝐶2(𝐷) and 𝜈 ∊ 𝐷 is a simple root of ᶂ, so ᶂ(ᶍ𝑖) =0,

 ᶂ′(ᶍ𝑖) ≠0, ᶂ′′(ᶍ𝑖) ≠0.

Input: An initial guess ᶍ0 ∊ 𝐷An error tolerance 𝑇𝑜𝑙 > 0, and a

maximum number of iterations 𝑁.

Output: An approximation root, ᶍ𝑖+1, or a message of failure if

no convergence is achieved within 𝑁 iterations.

Step 1: Set i = 0.

Step 2: While 𝑖 < 𝑁 do,

Step 3: For a given ᶍ0, calculate Halley’s update:

ᶍ𝑖+1 = ᶍ𝑖 −
2ᶂ(ᶍ𝑖)ᶂ′(ᶍ𝑖)

2(ᶂ′(ᶍ𝑖))
2

−ᶂ(ᶍ𝑖)ᶂ′′(ᶍ𝑖)
.

Step 4: If |ᶍ𝑖+1 − ᶍ𝑖| < Tol, then return ᶍ𝑖+1 and stop.

Step 5: Set 𝑖 = 𝑖 + 1and go to step 3.

Combination of the Newton Method, the Newton Inverse

Method, and the Halley Method (NIH)

 This approach solves nonlinear equations by combining the

Newton method, the Newton inverse method, and the Halley

method, as introduced by (Silalahi et al., 2017).

Algorithm. (NIH)

Given a sufficiently smooth function ᶂ: 𝐷 ⊆ ℝ ⟶ ℝ, assuming

ᶂ ∊ 𝐶2(𝐷).

Input: An initial guess ᶍ0 ∊ 𝐷An error tolerance 𝑇𝑜𝑙 > 0, and a

maximum number of iterations 𝑁.

Output: An approximation root, 𝑧𝑖+1, or a message of failure if

convergence is not achieved within 𝑁 iterations.

Step 1: Set i = 0.

Step 2: While 𝑖 < 𝑁 do,

Step 3: For a given ᶍ0, compute ᶍ𝑖+1 = ᶍ𝑖 −
ᶂ(ᶍ𝑖)

ᶂ′(ᶍ𝑖)

 and ᶍ𝑖
∗ = ᶍ𝑖 −

ᶂ(ᶍ𝑖)

2
(

1

ᶂ′(ᶍ𝑖)
+

1

ᶂ′(ᶍ𝑖+1)
).

Step 4: Evaluate 𝑧𝑖+1 = ᶍ𝑖
∗ −

2ᶂ(ᶍ𝑖
∗)ᶂ′(ᶍ𝑖

∗)

2(ᶂ′(ᶍ𝑖
∗))

2
−ᶂ(ᶍ𝑖

∗)ᶂ′′(ᶍ𝑖
∗)

 .

Step 5: If |𝑧𝑖+1 − 𝑧𝑖| < 𝑇𝑜𝑙 or the maximum number of

iterations is reached, terminate; otherwise, return to Step 4.

Ali and Fathi/ Science Journal of University of Zakho, 13(4), 590-599 October-December, 2025

592

Proposed Variant Newton–Halley Method (VNHM)

 The Proposed Variant Newton–Halley Method (VNHM)

combines the strengths of predictor–corrector techniques with the

fast convergence of higher-order iterative schemes. The method

is developed through a detailed Taylor series analysis. VNHM

begins with a Variant Newton Method (VNM) step to ensure

stability, followed by a Halley-type corrector to enhance the

convergence rate without sacrificing accuracy. The main

objective is to provide a method that is both efficient and reliable,

while keeping the computational requirements reasonable.

𝑧𝑖+1 = 𝑦𝑖+1 −
2ᶂ(𝑦𝑖+1)ᶂ′(𝑦𝑖+1)

2ᶂ′2(𝑦𝑖+1)−ᶂ(𝑦𝑖+1)ᶂ′′(𝑦𝑖+1)
, 𝑖 = 0,1,2, … (4)

where 𝑦𝑖+1 = ᶍ𝑖 −
2ᶂ(ᶍ𝑖)

[ᶂ′(ᶍ𝑖)+ᶂ′(ᶍ𝑖+1)]
 and ᶍ𝑖+1 = ᶍ𝑖 −

ᶂ(ᶍ𝑖)

ᶂ′(ᶍ𝑖)
.

In this section, we provide all the essential steps and explanations

needed for full understanding and transparency, as is standard for

introducing a new algorithm in numerical analysis.

Derivation of the Method:

 Suppose you have a function ᶂ: 𝐷 ⊆ ℝ ⟶ ℝ that’s smooth

enough, and you want to find a simple root (i.e., ᶂ(ᶍ∗) =0, and

 ᶂ′(ᶍ∗) ≠0). Start with an initial guess ᶍ0 close to the root. The

method proceeds in three clear steps:

Step 1: Newton’s Predictor.

ᶍ𝑖+1 = ᶍ𝑖 −
ᶂ(ᶍ𝑖)

ᶂ′(ᶍ𝑖)
.

This is the usual Newton step, giving a better estimate for the

root.

Step 2: Variant Newton (VNM) Correction

𝑦𝑖+1 = ᶍ𝑖 −
2ᶂ(ᶍ𝑖)

[ᶂ′(ᶍ𝑖)+ᶂ′(ᶍ𝑖+1)]
.

Here, you average the derivative at xₙ and yₙ (an approach

inspired by the Weerakoon–Fernando method) to get a more

stable, higher-order update, but without needing second

derivatives. This step often does a good job of improving the

guess, especially if Newton’s step was unstable.

Step 3: Halley’s High-Order Corrector.

𝑧𝑖+1 = 𝑦𝑖+1 −
2ᶂ(𝑦𝑖+1)ᶂ′(𝑦𝑖+1)

2ᶂ′2(𝑦𝑖+1)−ᶂ(𝑦𝑖+1)ᶂ′′(𝑦𝑖+1)
.

Finally, Halley’s formula is used at 𝑦𝑖+1. Since 𝑦𝑖+1 is already a

decent approximation, applying Halley’s step here delivers even

higher accuracy, usually more than what’s possible with either

Newton or VNM alone.

Algorithm (VNHM)

Given ᶂ: 𝐷 ⊆ ℝ ⟶ ℝ with ᶂ, ᶂ′, ᶂ′′continuous and 𝜈 ∊ 𝐷 is a

simple root of ᶂ.

Input: Initial guess ᶍ0 ∊ 𝐷, tolerance 0 < 𝑇𝑜𝑙 < 1, and a

maximum number of iterations 𝑁.

Output: An approximation root, 𝑧𝑖+1, or a message of failure if

no convergence is achieved within 𝑁 iterations.

Step 1: Set i = 0.

Step 2: For a given ᶍ0, calculate the predictor step, which

involves

 ᶍ𝑖+1 = ᶍ𝑖 −
ᶂ(ᶍ𝑖)

ᶂ′(ᶍ𝑖)
,

 𝑦𝑖+1 = ᶍ𝑖 −
2ᶂ(ᶍ𝑖)

[ᶂ′(ᶍ𝑖)+ᶂ′(ᶍ𝑖+1)]
.

Step 3: Evaluate the Halley correction step as follows:

𝑧𝑖+1 = 𝑦𝑖+1 −
2ᶂ(𝑦𝑖+1)ᶂ′(𝑦𝑖+1)

2ᶂ′2(𝑦𝑖+1) − ᶂ(𝑦𝑖+1)ᶂ′′(𝑦𝑖+1)
.

Step 4: If |z𝑖+1 − z𝑖| < Tol, then return z𝑖+1 as the approximate

solution and stop.

Step 5: Set 𝑖 = 𝑖 + 1. If 𝑖 < 𝑁, go to step 2; otherwise, return to

the algorithm failed to converge.

Remarks and Limitations:

 Stability: As with all open (non-bracketing) methods,

VNHM is not magic. If you start too far from the root, the method

may fail to converge or may diverge entirely. Applicability:

VNHM is most useful when you need high precision and have

easy access to both first and second derivatives. If calculating

derivatives is expensive or at risk of error, this method may not

be ideal.

Convergence Analysis:

 In this section, we present the convergence analysis of the

new three-step iterative method (4) for solving nonlinear

equations

Theorem: Let 𝜈 be a simple zero of a function that is

continuously differentiable up to order eight on an open interval.

If the initial guess 𝑥0 is chosen sufficiently close to 𝜈, then the

three‐step VNHM iteration in Algorithm 4 converges to 𝜈 with

ninth‐order accuracy.

Proof: Since ᶂ(𝜈) = 0 and 𝜖𝑖 = ᶍ𝑖 − 𝜈, Taylor’s theorem around

the simple root 𝜈 gives

 ᶂ(ᶍ𝑖) = (ᶍ𝑖 − 𝜈)ᶂ′(𝜈) +
(ᶍ𝑖−𝜈)2

2!
ᶂ(2)(𝜈) +

(ᶍ𝑖−𝜈)3

3!
ᶂ(3)(𝜈) +

(ᶍ𝑖−𝜈)4

4!
ᶂ(4)(𝜈) + ⋯. (5)

This expansion will form the basis for our error‐recurrence analysis. By taking the first derivative of (5) with respect to ᶍ𝑖, we obtain

 ᶂ′(ᶍ𝑖) = ᶂ′(𝜈) + (ᶍ𝑖 − 𝜈)ᶂ′′(𝜈) +
(ᶍ𝑖−𝜈)2

2!
ᶂ(3)(𝜈) +

(ᶍ𝑖−𝜈)3

3!
ᶂ(4)(𝜈) + ⋯. (6)

Substituting 𝜖𝑖 = ᶍ𝑖 − 𝜈 in (5) and (6), we have

 ᶂ(ᶍ𝑖) = 𝜖𝑖ᶂ′(𝜈) +
(𝜖𝑖)2

2!
ᶂ′′(𝜈) +

(𝜖𝑖)3

3!
ᶂ(3)(𝜈) +

(𝜖𝑖)4

4!
ᶂ(4)(𝜈) + 𝑂(𝜖𝑖

5), (7)

where 𝑂(𝜖𝑖
5) represents all terms of order 5 and higher.

 ᶂ′(ᶍ𝑖) = ᶂ′(𝜈) + 𝜖𝑖ᶂ′′(𝜈) + +
(𝜖𝑖)2

2!
ᶂ(3)(𝜈) +

(𝜖𝑖)3

3!
ᶂ(4)(𝜈) + 𝑂(𝜖𝑖

4). (8)

From (7) and (8), we get

ᶂ(ᶍ𝑖)

ᶂ′(ᶍ𝑖)
=

𝜖𝑖ᶂ′(𝜈)+
(𝜖𝑖)

2

2!
ᶂ′′(𝜈)+𝑂(𝜖𝑖

3)

ᶂ′(𝜈)+𝜖𝑖ᶂ′′(𝜈)+𝑂(𝜖𝑖
2)

. (9)

When (9) is substituted into (1) and used ᶍ𝑖+1 = 𝜖𝑖+1
ᶍ

+ 𝜈, the result is

 𝜖𝑖+1
ᶍ

= 𝜖𝑖 −
𝜖𝑖ᶂ′(𝜈)+

(𝜖𝑖)
2

2!
ᶂ′′(𝜈)+𝑂(𝜖𝑖

3)

ᶂ′(𝜈)+𝜖𝑖ᶂ′′(𝜈)+𝑂(𝜖𝑖
2)

. (10)

For small 𝜖𝑖, approximation

Ali and Fathi/ Science Journal of University of Zakho, 13(4), 590-599 October-December, 2025

594

 𝜖𝑖+1
ᶍ

= 𝜖𝑖 −
𝜖𝑖+

(𝜖𝑖)
2

2!

ᶂ′′(𝜈)

ᶂ′(𝜈)

1−𝜖𝑖
ᶂ′′(𝜈)

ᶂ′(𝜈)

. (11)

Using the binomial expansion (i.e.
1

1+u
= 1 − 𝑢 + 𝑢2 − 𝑢3 + ⋯), we get

 𝜖𝑖+1
ᶍ

= 𝜖𝑖 − (𝜖𝑖 +
(𝜖𝑖)2

2!

ᶂ′′(𝜈)

ᶂ′(𝜈)
) (1 − 𝜖𝑖

ᶂ′′(𝜈)

ᶂ′(𝜈)
+ (𝜖𝑖

ᶂ′′(𝜈)

ᶂ′(𝜈)
)

2

− ⋯). (12)

So, the second-order binomial expansion gives

 𝜖𝑖+1
ᶍ

= 𝜖𝑖 − (𝜖𝑖 +
𝜖𝑖

2

2!

ᶂ′′(𝜈)

ᶂ′(𝜈)
− 𝜖𝑖

2 ᶂ′′(𝜈)

ᶂ′(𝜈)
+ 𝑂(𝜖𝑖

3)). (13)

Hence

 𝜖𝑖+1
ᶍ

=
ᶂ′′(𝜈)

2ᶂ′(𝜈)
𝜖𝑖

2 + 𝑂(𝜖𝑖
3) = 𝐶2 𝜖𝑖

2 + 𝑂(𝜖𝑖
3), (14)

where 𝑐2 is defined as the constant
ᶂ′′(𝜈)

2ᶂ′(𝜈)
. This shows that Newton’s iteration, ᶍ𝑖+1, converges with order 2.

Now, we want to determine how 𝑦𝑖+1 = ᶍ𝑖 −
2ᶂ(ᶍ𝑖)

ᶂ′(ᶍ𝑖)+ᶂ′(ᶍ𝑖+1)
 converges to 𝜈.

Taylor expansion of 𝑓(ᶍ𝑖) around 𝜈 is

 ᶂ(ᶍ𝑖) = (ᶍ𝑖 − 𝜈)ᶂ′(𝜈) +
(ᶍ𝑖−𝜈)2

2!
ᶂ(2)(𝜈) +

(ᶍ𝑖−𝜈)3

3!
ᶂ(3)(𝜈) + 𝑂(ᶍ𝑖 − 𝜈)4. (15)

Since 𝜖𝑖 = ᶍ𝑖 − 𝜈,

 ᶂ(ᶍ𝑖) = 𝜖𝑖ᶂ′(𝜈) +
(𝜖𝑖)2

2!
ᶂ′′(𝜈) +

(𝜖𝑖)3

3!
ᶂ(3)(𝜈) + 𝑂(𝜖𝑖

4). (16)

 ᶂ′(ᶍ𝑖) = ᶂ′(𝜈) + (ᶍ𝑖 − 𝜈)ᶂ′′(𝜈) +
(ᶍ𝑖−𝜈)2

2!
ᶂ(3)(𝜈) + 𝑂(ᶍ𝑖 − 𝜈)3. (17)

Similarly, for the iteration 𝑖 + 1 we have

 ᶂ′(ᶍ𝑖+1) = ᶂ′(𝜈) + (ᶍ𝑖+1 − 𝜈)ᶂ′′(𝜈) +
(ᶍ𝑖−𝜈)2

2!
ᶂ(3)(𝜈) + 𝑂(ᶍ𝑖 − 𝜈)3. (18)

Substituting 𝜖𝑖 = ᶍ𝑖 − 𝜈 and ᶍ𝑖+1 − 𝜈 = 𝐶2𝜖𝑖
2, we have

 ᶂ′(ᶍ𝑖+1) = ᶂ′(𝜈) + 𝐶2𝜖𝑖
2ᶂ′′(𝜈) +

(𝐶2𝜖𝑖
2)2

2
ᶂ(3)(𝜈) + 𝑂(𝜖𝑖

4). (19)

ᶂ′(ᶍ𝑖) + ᶂ′(ᶍ𝑖+1) = (ᶂ′(𝜈) + 𝜖𝑖ᶂ′′(𝜈) +
𝜖𝑖

2

2
ᶂ(3)(𝜈) +

4𝜖𝑖
3

4∗6
ᶂ(4)(𝜈) + 𝑂(𝜖𝑖

5)) + (ᶂ′(𝜈) + 𝐶2𝜖𝑖
2ᶂ′′(𝜈) +

𝐶2
2𝜖𝑖

4

2
ᶂ(3)(𝜈) +

𝐶2
3𝜖𝑖

6

6
ᶂ(4)(𝜈) +

𝑂(𝜖𝑖
5)), = 2ᶂ′(𝜈) + 𝜖𝑖ᶂ(3)(𝜈) + (

1

2
ᶂ′′(𝜈) + 𝐶2ᶂ′′(𝜈)) 𝜖𝑖

2 +
1

6
ᶂ(4)(𝜈)𝜖𝑖

3 + 𝑂(𝜖𝑖
4). (20)

By substituting (18) and (20) into 𝑦𝑖+1in (2), we obtain

 𝑦𝑖+1 = ᶍ𝑖 −

2(𝜖𝑖ᶂ′(𝜈)+
𝜖𝑖

2

2
ᶂ′′(𝜈)+

𝜖𝑖
3

6
ᶂ(3)(𝜈)+𝑂(𝜖𝑖

4))

2ᶂ′(𝜈)+𝜖𝑖ᶂ′′(𝜈)+(
1

2
ᶂ(3)(𝜈)+𝐶2ᶂ′′(𝜈))𝜖𝑖

2+
1

6
ᶂ(4)(𝜈)𝜖𝑖

3+O(𝜖𝑖
4)

 . (21)

Subtracting 𝜈 from both sides of (21) and let 𝜖𝑖+1
𝑦

= 𝑦𝑖+1 − 𝜈, we obtain

𝜖𝑖+1
𝑦

= 𝜖𝑖 − [2𝜖𝑖ᶂ′(𝜈) + 𝜖𝑖
2ᶂ′′(𝜈) +

𝜖𝑖
3

3
ᶂ(3)(𝜈) + 𝑂(𝜖𝑖

4)] [1/ (2ᶂ′(𝜈) + 𝜖𝑖ᶂ′′(𝜈) + (
1

2
ᶂ(3)(𝜈) + 𝐶2ᶂ′′(𝜈)) 𝜖𝑖

2 + O(𝜖𝑖
3))].

 (22)

Since

1/ (2ᶂ′(𝜈) + 𝜖𝑖ᶂ′′(𝜈) + (
1

2
ᶂ(3)(𝜈) + 𝐶2ᶂ′′(𝜈)) 𝜖𝑖

2) =
1

2ᶂ′(𝜈)
[1/ (1 + 𝜖𝑖

ᶂ′′(𝜈)

2ᶂ′(𝜈)
+ (

ᶂ(3)(𝜈)

4ᶂ′(𝜈)
+

𝐶2

2ᶂ′(𝜈)
ᶂ′′(𝜈)) 𝜖𝑖

2)], (23)

The binomial expansion yields

𝜖𝑖+1
𝑦

=
1

2ᶂ′(𝜈)
[1 −

𝜖𝑖ᶂ′′(𝜈)

2ᶂ′(𝜈)
− (

ᶂ(3)(𝜈)

4ᶂ′(𝜈)
+

𝐶2
2ᶂ′(𝜈)

ᶂ′′(𝜈)) 𝜖𝑖
2 + (

𝜖𝑖ᶂ′′(𝜈)

2ᶂ′(𝜈)
+ (

ᶂ(3)(𝜈)

4ᶂ′(𝜈)
+

𝐶2
2ᶂ′(𝜈)

ᶂ′′(𝜈)) 𝜖𝑖
2)

2

+ 𝑂(𝜖𝑖
5)] = 𝜖𝑖 −

(2𝜖𝑖ᶂ′(𝜈) + 𝜖𝑖
2ᶂ′′(𝜈) +

𝜖𝑖
3

3
ᶂ(3)(𝜈) + 𝑜(𝜖𝑖

4)) (
1

2ᶂ′(𝜈)
(1 −

𝜖𝑖ᶂ′′(𝜈)

2ᶂ′(𝜈)
−

ᶂ(3)(𝜈)

4ᶂ′(𝜈)
−

𝐶2ᶂ′′(𝜈)

2ᶂ′(𝜈)
𝜖𝑖

2 +
𝜖𝑖

2ᶂ′′(𝜈)2

4ᶂ′(𝜈)2 +
𝜖𝑖ᶂ′′(𝜈)

ᶂ′(𝜈)
(

ᶂ(3)(𝜈)

4ᶂ′(𝜈)
+

𝐶2ᶂ′′(𝜈)

2ᶂ′(𝜈)
) 𝜖𝑖

2 +

𝑂(𝜖𝑖
4))). (24)

Substituting 𝐶𝑛 =
ᶂ(𝑛)(𝜈)

𝑛!ᶂ′(𝜈)
 into (24), we yield

𝜖𝑖+1
𝑦

= 𝜖𝑖 − (2𝜖𝑖ᶂ′(𝜈) + 𝜖𝑖
2ᶂ′′(𝜈) +

𝜖𝑖
3

3
ᶂ(3)(𝜈) + 𝑂(𝜖𝑖

4)) (
1

2ᶂ′(𝜈)
(1 − 𝜖𝑖𝐶2 − 𝜖𝑖

2 3𝐶3

2
− 𝐶2

2𝜖𝑖
2 + 𝜖𝑖

2𝐶2
2 + 𝜖𝑖

3𝐶2
2 + 2𝜖𝑖

3𝐶2
4 + 𝑂(𝜖𝑖

4))).

 (25)

= 𝜖𝑖 − (2𝜖𝑖ᶂ′(𝜈) + 𝜖𝑖
2ᶂ′′(𝜈) +

𝜖𝑖
3

3
ᶂ(3)(𝜈) + 𝑜(𝜖𝑖

4)) ∗ (
1

2ᶂ′(𝜈)
−

𝐶2

2ᶂ′(𝜈)
𝜖𝑖 + (

3𝐶3

2
+ 𝐶2

2 − 𝐶2
2)

𝜖𝑖
2

2ᶂ′(𝜈)
+

(𝐶2
2+2𝐶2

4)

2ᶂ′(𝜈)
𝜖𝑖

3 + 𝑂(𝜖𝑖
4)). (26)

After some algebra, we get

 𝜖𝑖+1
𝑦

= (𝐶2
2 +

𝐶3

2
) 𝜖𝑖

3 + 𝑂(𝜖𝑖
4). (27)

This demonstrates clearly that 𝑦𝑖+1 in (2) has third-order convergence

Now, expanding ᶂ(𝑦𝑖+1) around 𝜈 gives

ᶂ(𝑦𝑖+1) = (𝑦𝑖+1 − 𝜈)ᶂ′(𝜈) +
(𝑦𝑖+1−𝜈)2

2
ᶂ′′(𝜈) +

(𝑦𝑖+1−𝜈)3

3!
ᶂ′′′(𝜈) +

(𝑦𝑖+1−𝜈)4

4!
ᶂ(4)(𝜈) +

(𝑦𝑖+1−𝜈)5

5!
ᶂ(5)(𝜈) + 𝑂((𝑦𝑖+1 − 𝜈)6). (28)

Ali and Fathi/ Science Journal of University of Zakho, 13(4), 590-599 October-December, 2025

594

 ᶂ′(𝑦𝑖+1) = ᶂ′(𝜈) + (𝑦𝑖+1 − 𝜈)ᶂ′′(𝜈) +
(𝑦𝑖+1−𝜈)2

2
ᶂ′′′(𝜈) +

(𝑦𝑖+1−𝜈)3

3!
ᶂ(4)(𝜈) + 𝑂((𝑦𝑖+1 − 𝜈)4). (29)

ᶂ″(𝑦𝑖+1) = ᶂ′′(𝜈) + (𝑦𝑖+1 − 𝜈)ᶂ′′′(𝜈) +
(𝑦𝑖+1−𝜈)2

2
ᶂ(4)(𝜈) +

(𝑦𝑖+1−𝜈)3

3!
ᶂ(5)(𝜈) +

(𝑦𝑖+1−𝜈)4

4!
ᶂ(6)(𝜈) + 𝑂((𝑦𝑖+1 − 𝜈)5). (30)

Replacing 𝑦𝑖+1 − 𝜈 with 𝐾𝜖𝑖
3where 𝐾 = 𝐶2

2 +
𝐶3

2
 in (29)- (31), gives

 ᶂ(𝑦𝑖+1) = 𝐾𝜖𝑖
3ᶂ′(𝜈) +

𝐾2𝜖𝑖
6

2
ᶂ′′(𝜈) +

𝐾3𝜖𝑖
9

3!
ᶂ(3)(𝜈) + 𝑂(𝜖𝑖

12), (31)

 ᶂ′(𝑦𝑖+1) = ᶂ′(𝜈) + 𝐾𝜖𝑖
3 ᶂ′′(𝜈) +

(K𝜖𝑖
3)

2

2
ᶂ(3)(𝜈) +

(K𝜖𝑖
3)

3

3!
ᶂ(4)(𝜈) + 𝑂 ((𝜖𝑖

3)
4

), (32)

 ᶂ″(𝑦𝑖+1) = ᶂ′′(𝜈) + K𝜖𝑖
3ᶂ(3)(𝜈) +

(𝐾𝜖𝑖
3)

2

2
ᶂ(4)(𝜈) +

(𝐾𝜖𝑖
3)

3

3!
ᶂ(5)(𝜈) +

(𝐾𝜖𝑖
3)

4

4!
ᶂ(6)(𝜈) + 𝑂 ((𝐾𝜖𝑖

3)
5

). (33)

2ᶂ(𝑦𝑖+1)ᶂ′(𝑦𝑖+1) = (2𝐾𝜖𝑖
3ᶂ′(𝜈) + 𝐾2𝜖𝑖

6ᶂ′′(𝜈) +
𝐾3𝜖𝑖

9

3
ᶂ(3)(𝜈)) (ᶂ′(𝜈) + 𝐾𝜖𝑖

3 ᶂ′′(𝜈) +
𝐾2𝜖𝑖

6

2
ᶂ(3)(𝜈) +

𝐾3𝜖𝑖
9

6
ᶂ(4)(𝜈)) =

2𝐾𝜖𝑖
3ᶂ′2(𝜈) + 3𝐾2𝜖𝑖

6ᶂ′(𝜈)ᶂ′′(𝜈) + (𝐾3ᶂ′′2(𝜈) +
4

3
𝐾3ᶂ′(𝜈)ᶂ(3)(𝜈)) 𝜖𝑖

9 + 𝑂 ((𝜖𝑖
3)

4
). (34)

2ᶂ′2(𝑦𝑖+1) = (2ᶂ′(𝜈) + 2𝐾3𝜖𝑖
3ᶂ′′(𝜈) + 𝐾2𝜖𝑖

6ᶂ(3)(𝜈) +
𝐾3𝜖𝑖

9

3
ᶂ(4)(𝜈)) (ᶂ′(𝜈) + 𝐾𝜖𝑖

3 ᶂ′′(𝜈) +
𝐾2𝜖𝑖

6

2
ᶂ(3)(𝜈) +

𝐾3𝜖𝑖
9

6
ᶂ(4)(𝜈)) =

2ᶂ′2
4K𝜖𝑖

3ᶂ′(𝜈)ᶂ′′(𝜈) + (2𝐾2ᶂ′(𝜈)ᶂ(3)(𝜈) + 2𝐾2ᶂ′′2(𝜈)) 𝜖𝑖
6 + (2𝐾3ᶂ′′(𝜈)ᶂ(3)(𝜈) +

2

3
𝐾3ᶂ′(𝜈)ᶂ(4)(𝜈)) 𝜖𝑖

9 + 𝑂 ((𝜖𝑖
3)

4
). (35)

ᶂ(𝑦𝑖+1)ᶂ′′(𝑦𝑖+1) = [𝐾𝜖𝑖
3ᶂ′(𝜈) +

𝐾2

2
𝜖𝑖

6ᶂ′′(𝜈) +
𝐾3

6
𝜖𝑖

9ᶂ′′′(𝜈)] [
ᶂ′′(𝜈) + 𝐾𝜖𝑖

3ᶂ(3)(𝜈)

 +
𝐾2

2
𝜖𝑖

6ᶂ(4)(𝜈)
] = 𝐾𝜖𝑖

3ᶂ′(𝜈)ᶂ′′(𝜈) + (
𝐾2

2
ᶂ′′2(𝜈) +

𝐾2ᶂ′(𝜈)ᶂ(3)(𝜈)) 𝜖𝑖
6 + ((

𝐾3

6
+

𝐾3

2
) ᶂ′′(𝜈)ᶂ(3)(𝜈) +

𝐾3

2
ᶂ′(𝜈)ᶂ(4) (𝜈))𝜖𝑖

9. (36)

2ᶂ′2(𝑦𝑖+1) − ᶂ(𝑦𝑖+1)ᶂ′′(𝑦𝑖+1) = [2ᶂ′2(𝜈) + 4𝐾ᶂ′(𝜈)ᶂ′′(𝜈)𝜖𝑖
3

+ (2𝐾2ᶂ′(𝜈)ᶂ(3)(𝜈) + 2𝐾3ᶂ′′2(𝜈)) 𝜖𝑖
6 + (2𝐾3ᶂ′(𝜈)ᶂ(3)(𝜈) +

2

3
𝐾3ᶂ′(𝜈)ᶂ(4)(𝜈)) 𝜖𝑖

9 + 𝑂(𝜖𝑖
12)] − [𝐾ᶂ′(𝜈)ᶂ′′(𝜈)𝜖𝑖

3
+ (

𝐾2

2
ᶂ(′′)2 + 𝐾2ᶂ′(𝜈)ᶂ3 (𝜈)) 𝜖𝑖

6 + ((
𝐾3

6
+

𝐾3

2
) ᶂ′′(𝜈)ᶂ(3)(𝜈) +

𝐾3

2
ᶂ′(𝜈)ᶂ(4) (𝜈)) 𝜖𝑖

9 + 𝑂(𝜖𝑖
12) = 2ᶂ′2(𝜈) + 3𝐾ᶂ′(𝜈)ᶂ′′(𝜈)𝜖𝑖

3 + (𝐾2ᶂ′(𝜈)ᶂ′′′(𝜈) +
3

2
𝐾2ᶂ′′2(𝜈))𝜖𝑖

6+(
11𝐾3

6
ᶂ′′

 (𝜈)ᶂ(3)(𝜈) −

𝐾3

2
ᶂ′′(𝜈)ᶂ(3)(𝜈) +

𝐾3

6
ᶂ′′(𝜈) ᶂ(4)(𝜈))𝜖𝑖

9 + 𝑂(𝜖𝑖
12). (37)

Substituting (34)-(37) into (4), we obtain

𝑧𝑖+1 = 𝑦𝑖+1 − [2Kᶂ2(𝜈)𝜖𝑖
3 + 3𝐾2ᶂ′(𝜈)ᶂ′′(𝜈)𝜖𝑖

6 + (𝐾3ᶂ′′2(𝜈) +
4

3
𝐾3ᶂ′(𝜈)ᶂ(3)(𝜈)) 𝜖𝑖

9 + 𝑂(𝜖𝑖
12)] [1/ (2ᶂ′2(𝜈) + 3Kᶂ′(𝜈)ᶂ″(𝜈)𝜖𝑖

3 +

(𝐾2ᶂ′(𝜈)ᶂ(3)(𝜈) +
3

2
𝐾2ᶂ′′2(𝜈)) 𝜖𝑖

6 + 𝑂(𝜖𝑖
12))], (38)

= 𝑦𝑖+1 − [2Kᶂ2(𝜈)𝜖𝑖
3 + 3𝐾2ᶂ′(𝜈)ᶂ′′(𝜈)𝜖𝑖

6 + (𝐾2ᶂ′′2(𝜈) +
4

3
𝐾2ᶂ′(𝜈)ᶂ(3)(𝜈)) 𝜖𝑖

9 +

 𝑂(𝜖𝑖
12)] [

1

2ᶂ′2
(𝜈)

(1 (1 +
(3Kᶂ′ (𝜈) ᶂ′′(𝜈)) 𝜖𝑖

3

2ᶂ′2
(𝜈)

+
(𝐾2ᶂ′(𝜈)ᶂ(3)(𝜈)+

3

2
𝐾2ᶂ′′2

(𝜈))𝜖𝑖
6

2ᶂ′2
(𝜈)

)⁄) + 𝑂(𝜖𝑖
9)] . (39)

Using the binomial expansion gives

𝑧𝑖+1 = 𝑦𝑖+1 − [2Kᶂ′2(𝜈)𝜖𝑖
3 + 3𝐾2ᶂ′(𝜈)ᶂ′′(𝜈)𝜖𝑖

6 + (𝐾3ᶂ′′2(𝜈) +
4

3
𝐾3ᶂ′(𝜈)ᶂ(3)(𝜈)) 𝜖𝑖

9 + 𝑂(𝜖𝑖
12)]

[
1

2ᶂ′2(𝜈)
(1 −

(3Kᶂ′(𝜈) ᶂ′′(𝜈)) 𝜖𝑖
3

2ᶂ′2
(𝜈)

−
(𝐾2ᶂ′(𝜈)ᶂ(3)(𝜈)+

3

2
𝐾2ᶂ′′2

(𝜈))𝜖𝑖
6

2ᶂ′2
(𝜈)

+ (
(3Kᶂ′(𝜈) ᶂ′′(𝜈))

2ᶂ′2
(𝜈)

)
2

𝜖𝑖
6)] +2 (

(3𝐾ᶂ′(𝜈) ᶂ′′(𝜈)) 𝜖𝑖
3

2ᶂ′2
(𝜈)

) (
(𝐾2ᶂ′(𝜈)ᶂ(3)(𝜈)+

3

2
𝐾2ᶂ′′2

(𝜈))𝜖𝑖
6

2ᶂ′2
(𝜈)

) −

(
(3Kᶂ′(𝜈) ᶂ′′(𝜈)) 𝜖𝑖

3

2ᶂ′2(𝜈)
)

3

+ 𝑂(𝜖𝑖
12)] (40)

= 𝑦𝑖+1 − (2Kᶂ′2(𝜈)𝜖𝑖
3 + 3𝐾2ᶂ′(𝜈)ᶂ′′(𝜈)𝜖𝑖

6 + (𝐾3ᶂ′′2(𝜈) +
4

3
𝐾3ᶂ′(𝜈)ᶂ(3)(𝜈)) 𝜖𝑖

9 + 𝑂(𝜖𝑖
12)) (

1

2ᶂ′2(𝜈)
(1 −

(3K ᶂ′′(𝜈)) 𝜖𝑖
3

2ᶂ′(𝜈)
+

(3𝐾2 ᶂ′′2
(𝜈)) 𝜖𝑖

6

2ᶂ′2(𝜈)
−

(𝐾2 ᶂ(3)(𝜈)) 𝜖𝑖
6

2ᶂ′(𝜈)
+

(3𝐾3ᶂ′′(𝜈) ᶂ(3)(𝜈)) 𝜖𝑖
9

2ᶂ′2(𝜈)
−

(9𝐾3 ᶂ′′3
(𝜈)) 𝜖𝑖

9

8ᶂ′3(𝜈)
)) + 𝑂(𝜖𝑖

12). (41)

Subtracting 𝜈 from both sides and setting 𝜖𝑖+1
𝑧 , we obtain

 𝜖𝑖+1
𝑧 = 𝑦𝑖+1 − 𝜈 − K 𝜖𝑖

3 + (−
𝐾3ᶂ(3)(𝜈)

6ᶂ′(𝜈)
+

𝐾3 ᶂ′′2
(𝜈)

4ᶂ′2(𝜈)
) 𝜖𝑖

9 + 𝑂(𝜖𝑖
12). (42)

Since 𝑦𝑖+1 − 𝜈= K𝜖𝑖
3, it follows that

 𝜖𝑖+1
𝑧 = (

𝐾3 ᶂ′′2
(𝜈)

4ᶂ′2(𝜈)
−

𝐾3ᶂ(3) (𝜈)

6ᶂ′(𝜈)
) 𝜖𝑖

9 + 𝑂(𝜖𝑖
12) . (43)

Ali and Fathi/ Science Journal of University of Zakho, 13(4), 590-599 October-December, 2025

595

Repeating the same algebraic expansion shows that every O(𝜖𝑖
6) The contribution drops out, so the first nonzero term is simplyM𝜖𝑖

9.

Thus, we have

 𝜖𝑖+1
𝑧 = M𝜖𝑖

9 + 𝑂(𝜖𝑖
12), (44)

Where

 M = 𝐾3 (
 ᶂ′′2

(𝜈)

4ᶂ′2
(𝜈)

−
ᶂ(3)(𝜈)

6ᶂ′(𝜈)
) . (45)

Recall 𝐾 = 𝑐2
2 +

𝐶3

2
 and using some algebra, (45) becomes

 𝑀 = (𝑐2
2 +

𝐶3

2
)

3
(

 ᶂ′′2
(𝜈)

4ᶂ′2(𝜈)
−

ᶂ(3)(𝜈)

6ᶂ′(𝜈)
) , (46)

where 𝑐𝑛 =
1

𝑛!

ᶂ(𝑛)(𝜈)

ᶂ′(𝜈)
), n=2,3,4,…

Therefore,

𝜖𝑖+1
𝑧 = [(𝑐2

2 − 𝐶3) (𝑐2
2 +

𝐶3

2
)

3

] 𝜖𝑖
9 + 𝑂(𝜖𝑖

12),

Which shows that the order of convergence of our new proposed method (VNHM) defined in (4) is nine. This completes the proof.

Testing Functions:

 We used the same test functions as (Weerakoon et al., 2000) and display the approximate zero 𝜈 found up to the 14 decimal

place.

ᶂ1(ᶍ) = ᶍ3 + 4ᶍ2 − 10, 𝜈 = 1.36523001341448.

ᶂ2(ᶍ) = sin2 (ᶍ) − ᶍ2 + 1, 𝜈 = 1.40449164821621.

ᶂ3(ᶍ) = ᶍ2 − 𝑒ᶍ − 3ᶍ + 2, 𝜈 = 0.257530285439771.

ᶂ4(ᶍ) = cos (ᶍ) − ᶍ, 𝜈 = 0.739085133214758.

ᶂ5(ᶍ) = (ᶍ − 1)3 − 1, 𝜈 = 2.

ᶂ6(ᶍ) = ᶍ3 − 10, 𝜈 = 2.15443469003367.

ᶂ7(ᶍ) = ᶍexp (ᶍ2) − sin2 (ᶍ) + 3cos (ᶍ) + 5, 𝜈 = −1.20764782713013.

ᶂ8(ᶍ) = ᶍ2sin2 (ᶍ) + exp [ᶍ2cos (ᶍ)sin (ᶍ)] − 28, 𝜈 = 4.62210416355283.

ᶂ9(ᶍ) = exp (ᶍ2 + 7ᶍ − 30) − 1, 𝜈 = 3.

Numerical Results:

 This study was conducted using the following hardware and

software: a personal computer with the specifics listed below:

Intel(R) Core (TM) i7-10870H CPU @ 2.20GHz 2.21 GHz,

RAM 16 GB. The following software is employed: MATLAB

software and the Windows 11 Ultimate 64-bit operating system.

Now, solve a few nonlinear equations using the new algorithm

discovered in this paper. NM, HM, VNM, NIH, and the approach

presented in this paper are also compared. Compares the number

of iterations, execution time, and accuracy of the proposed

method with NM, HM, VNM, and NIH at the set precision. The

tolerance is Tol=10-14.

Number of Iterations:

 Table 1 presents the number of iterations required by each

method. The results show that VNHM requires the fewest total

iterations across all test cases, with only 63 iterations in total,

fewer than NM, HM, VNM, or NIH. It is also important to note

that the number of iterations depends on both the chosen

tolerance and the initial starting point; when the initial guess is

closer to the actual root, fewer iterations are generally needed.

Table 1: Comparison of the number of iterations of each method.

Function ᶍ0
Number of iterations for each method

NM HM VNM NIH VNHM

ᶂ1

-0.5

1

2

-0.3

132

6

6

54

74

4

4

53

7

4

4

7

7

3

3

11

4

3

3

4

ᶂ2
1

3

7

7

6

7

5

4

3

3

3

3

ᶂ3
2

3

6

7

5

5

5

5

3

3

3

4

ᶂ4

1

1.7

-0.3

5

5

6

4

4

5

3

4

4

3

3

3

2

3

3

ᶂ5
3.5

2.5

8

7

5

5

6

5

3

3

4

3

Ali and Fathi/ Science Journal of University of Zakho, 13(4), 590-599 October-December, 2025

597

ᶂ6 1.5 7 4 5 3 3

ᶂ7 -2 9 5 6 4 4

ᶂ8 5 10 7 6 4 5

ᶂ9
3.5

3.25

13

9

7

6

9

7

5

4

5

4

Total 304 210 96 71 63

Execution Time:

 Table 2 displays each method's execution time. Based on the computational results, the VNHM method has the smallest running

time overall

Table 2: Execution time for each method across test functions.

Function ᶍ0
Execution time (s).

NM HM VNM NIH VNHM

ᶂ1

-0.5 0.012174 0.006913 0.004003 0.005636 0.003387

1 0.004597 0.001927 0.002460 0.003301 0.001864

2 0.003197 0.003522 0.002494 0.001724 0.002106

-0.3 0.003729 0.007959 0.003999 0.010023 0.002390

ᶂ2

1 0.005388 0.004280 0.004652 0.012623 0.002643

3 0.003272 0.006936 0.002767 0.003364 0.002234

ᶂ3

2 0.002747 0.003331 0.003039 0.003406 0.002665

3 0.005315 0.002674 0.003690 0.002218 0.002550

ᶂ4

1 0.002221 0.002055 0.003536 0.003405 0.002452

1.7 0.002353 0.002799 0.003601 0.002561 0.002967

-0.3 0.002911 0.003183 0.003014 0.002931 0.002227

ᶂ5

3.5 0.004415 0.003599 0.003602 0.002140 0.003596

2.5 0.003077 0.002941 0.002604 0.002100 0.002663

ᶂ6 1.5 0.003304 0.002422 0.002262 0.003735 0.002177

ᶂ7 -2 0.004583 0.006338 0.004292 0.004053 0.004003

ᶂ8 5 0.005394 0.007633 0.009630 0.004031 0.007925

ᶂ9

3.5 0.002997 0.004680 0.003668 0.003145 0.004239

3.25 0.003444 0.004051 0.005279 0.003543 0.005348

Total 0.075118 0.077243 0.068592 0.073939

0.057436

Accuracy:

 Table 3 presents the computed root values obtained by each

method for the selected nonlinear equations. The results show

that all five methods generally converge to the expected root

values across most test functions. For the benchmark function

ᶂ8, however, the root values found by NM, HM, and VNM (all

approximately 3.437471) differ notably from the value obtained

by both VNHM and NIH (approximately 4.622104), which is

closer to the true solution reported by Weerakoon and Fernando.

This comparison highlights that, while all methods perform

similarly on standard cases, both VNHM and NIH demonstrate

superior accuracy when solving more challenging equations.

These findings confirm the robustness of VNHM, particularly for

difficult problems where traditional methods may fail to reach the

correct root.

Table 3: Accuracy of computed root values for each method.

Function ᶍ0
Root value.

NM HM VNM NIH VNHM

ᶂ1

-0.5 1.36523001341410 1.36523001341410 1.36523001341410 1.36523001341410 1.36523001341410

1 1.36523001341410 1.36523001341410 1.36523001341410 1.36523001341410 1.36523001341410

2 1.36523001341410 1.36523001341410 1.36523001341410 1.36523001341410 1.36523001341410

-0.3 1.36523001341410 1.36523001341410 1.36523001341410 1.36523001341410 1.36523001341410

ᶂ2 1 1.40449164821534 1.40449164821534 1.40449164821534 1.40449164821534 1.40449164821534

Ali and Fathi/ Science Journal of University of Zakho, 13(4), 590-599 October-December, 2025

597

 3 1.40449164821534 1.40449164821534 1.40449164821534 1.40449164821534 1.40449164821534

ᶂ3

2 0.25753028543986 0.25753028543986 0.25753028543986 0.25753028543986 0.25753028543986

3 0.25753028543986 0.25753028543986 0.25753028543986 0.25753028543986 0.25753028543986

ᶂ4

1 0.73908513321516 0.73908513321516 0.73908513321516 0.73908513321516 0.73908513321516

1.7 0.73908513321516 0.73908513321516 0.73908513321516 0.73908513321516 0.73908513321516

-0.3 0.73908513321516 0.73908513321516 0.73908513321516 0.73908513321516 0.73908513321516

ᶂ5

2

3.5 2 2 2 2 2

2.5 2 2 2 2 2

ᶂ6

1.5 2.15443469003188 2.15443469003188 2.15443469003188 2.15443469003188 2.15443469003188

ᶂ7

-2 -1.20764782713092 -1.20764782713092 -1.20764782713092 -1.20764782713092 -1.20764782713092

ᶂ8

5 3.43747174342177 3.43747174342177 3.43747174342177 4.62210416355284 4.62210416355284

ᶂ9

3.5 3 3 3 3 3

3.25 3 3 3 3 3

Comparisons of Efficiency Index:

 The term "efficiency index" compares the performance of

different iterative methods. It depends upon the order of

convergence and the number of functional evaluations of the

iterative process. If " ŗ " denotes the order of convergence and "

Nᶂ " Denote the number of functional evaluations of an iterative

method, then the efficiency index E.I is defined as:

E. I = ŗ
1

Nᶂ.

On this basis, NM(Nazeer et al., 2016) has an efficiency of 2
1

2 ≈

1.4142. HM (Noor et al., 2007) has an order of convergence of

three, and the number of functional evaluations required for this

method is three, so its efficiency 3
1

3 ≈ 1.4422. The VNM has an

efficiency of 3
1

3 ≈ 1.4422. The VNHM needs one evaluation of

the function's first and second derivatives. Thus, this method has

three functional evaluations. i.e.

Nᶂ = 6.

Also, in the earlier section, it was proven that the order of

convergence of the VNHM is nine. i.e.

ŗ =9.

Thus, the efficiency index of VNHM is:

E. I = 9
1

6 ≈ 1.4422.

Table 4: Efficiency indices of the compared iterative methods.

Method
Number of function and Derivative

evaluations
Efficiency index

NM, quadratic 2 2
1
2 ≈ 1.41421

HM 3rd order 3 3
1
3 ≈ 1.44225

VNM 3rd order 3 3
1
3 ≈ 1.44225

VNHM 9th order 6 9
1
6 ≈ 1.44225

Real-World Applications:

 VNHM’s ability to find roots with very high precision in

just a few steps makes it highly suitable for real-time control

problems in robotics, where fast and accurate solutions are

needed (Martin, 2019). The method is also advantageous in

tuning nonlinear stiffness curves in structural analysis

(Engelberger, 2014) and for solving transcendental equations in

optical design, such as determining resonant frequencies in

photonic crystals (Reddy, 2003).In each of these cases, the

combination of rapid convergence and moderate derivative

evaluation cost enables VNHM to outperform traditional

Newton- or Halley-based methods.

Ali and Fathi / Science Journal of the University of Zakho, 13(4), 589-598 October-December, 2025

598

Figure 1: Reduction of the relative error graph from iteration 1 to iteration 5.

Figure 2: Reduction of relative error graph of iteration 1 to iteration 5.

 Figures 1 and 2 illustrate the convergence rates of the five

iterative methods for solving nonlinear equations. As shown, the

VNHM consistently achieves high accuracy in the fewest steps

across all test problems. In practical terms, this demonstrates that

an effective combination of iterative techniques can significantly

reduce computation time and enhance robustness for a wide

range of equations.

CONCLUSIONS

 In this paper, we combined the Halley method (HM) and the

Variant Newton method (VNM) to construct the Variant

Newton–Halley Method (VNHM) for solving nonlinear

equations. This method is used to find solutions to nonlinear

equations. We have shown that the proposed method has a ninth-

order convergence. By using some test examples, the

performance and efficiency of the VNHM have been analyzed.

Tables 1, 2, 3, and 4 show the best performance of the proposed

iterative algorithms as compared to other well-known existing

iterative algorithms in terms of accuracy, speed, number of

iterations, efficiency index, and computational order of

convergence. Also, relative error reduces the fastest among other

methods, as shown in Figures 1 and 2. The VNHM is effective

for real-valued nonlinear equations but is currently not applicable

to complex roots. Future work will focus on extending the

method to complex roots.

Ali and Fathi/ Science Journal of University of Zakho, 13(4), 590-599 October-December, 2025

599

Acknowledgment:

 The authors would like to express their sincere gratitude to

the Science Journal of the University of Zakho for its continued

support and for providing a platform to share this research. We

also thank the anonymous reviewers for their valuable comments

and suggestions, which helped improve the quality of this paper.

Ethical Approval:

 This study does not involve human participants or animals,

and therefore, ethical approval was not required.

Declarations:

Authors' contribution: K.H.M.: Methodology, Writing original

draft, Formal analysis, Validation, Software. B.Gh.F.: Resources,

Acquisition, Formal Analysis, Investigation, Software Review.

Funding: This work received no external funding.

Availability of data and materials: Data sharing does not apply to

this article, as no data sets were generated or analyzed during the

current study.

Competing interests: The authors declare that they have neither

financial nor conflict of interest.

REFERENCES

Azure, I., Aloliga, G., & Doabil, L. (2019). Comparative Study

of Numerical Methods for Solving Non-linear Equations

Using Manual Computation. Mathematics Letters, 5(4),

41. DOI: 10.11648/j.ml.20190504.11

Azzo, S. M., & Manaa, S. A. (2022). Sumudu-Decomposition

Method to Solve Generalized Hirota-Satsuma Coupled

Kdv System. Science Journal of University of Zakho,

10(2), 43–47. DOI: 10.25271/sjuoz.2022.10.2.879

Elhasadi, O. I. (2007). Newton’s and Halley’s methods for real

polynomials [Master’s thesis, University of Guelph].

University of 448 Guelph Atrium.

https://atrium.lib.uoguelph.ca/xmlui/handle/10214/1002

Engelberger, J. (2014). Springer Handbook of Robotics Robotics

& Automation : Books for Robotics. June.

Goodman, R. O. Y. H., & Obel, J. K. W. R. (2017). High-Order

Bisection Method For Computing Invariant Manifolds

Of Two-Dimensional Maps. 21(7), 2017–2042. DOI:

10.1142/S0218127411029604

Kumar, M., Singh, A. K., & Srivastava, A. (2013). Various

Newton-type iterative methods for solving nonlinear

equations. Journal of the Egyptian Mathematical Society,

21(3), 334–339. DOI: 10.1016/j.joems.2013.03.001

Kusni, A., & Shamsul, A. (2016). Numerical Study of Some

Iterative Methods for Solving Nonlinear Equations. 5(2),

1–10. Retrieved from www.ijesi.org

Madhu, K., & Jayaraman, J. (2016). Higher order methods for

nonlinear equations and their basins of attraction.

Mathematics, 4(2), 1–20. DOI: 10.3390/math4020022

Manaa, S. A., Easif, F. H., & Murad, J. J. (2021). Residual Power

Series Method for Solving Klein-Gordon Schrödinger

Equation. Science Journal of University of Zakho, 9(2),

123–127. DOI: 10.25271/sjuoz.2021.9.2.810

Martin, O. J. F. (2019). Molding the flow of light with

metasurfaces. 2019 URSI Asia-Pacific Radio Science

Conference, AP-RASC 2019, 32–43. DOI:

10.23919/URSIAP-RASC.2019.8738549

McDonough, J. M. (2007). Lectures in Basic Computational

Numerical Analysis. Journal of Biomechanics, 39, 163.

Retrieved from http://www.engr.uky.edu/~acfd/egr537-

lctrs.pdf

Naseem, A., Rehman, M. A., & Abdeljawad, T. (2022). A Novel

Root-Finding Algorithm with Engineering Applications

and its Dynamics via Computer Technology. IEEE

Access, 10(1), 19677–19684. DOI:

10.1109/ACCESS.2022.3150775

Nazeer, W., & Tanveer, M. (2016). Modified Golbabai and

Javidi ’ S Method (Mgjm) for Solving Modified

Golbabai and Javidi ’ S Method (Mgjm) for Solving

Nonlinear Functions With Convergence of Order Six.

January 2015.

Noor, M. A., Khan, W. A., & Hussain, A. (2007). A new

modified Halley method without second derivatives for

nonlinear equation. Applied Mathematics and

Computation, 189(2), 1268–1273. DOI:

10.1016/j.amc.2006.12.011

Reddy, J. N. (2003). Mechanics of Laminated Composite Plates

and Shells. Mechanics of Laminated Composite Plates

and Shells. DOI: 10.1201/b12409

Sabali, A. J., Manaa, S. A., & Easif, F. H. (2021). New

Successive Approximation Methods for Solving Strongly

Nonlinear Jaulent-Miodek Equations. Science Journal of

University of Zakho, 9(4), 193–197. DOI:

10.25271/sjuoz.2021.9.4.869

Scavo, T. R., & Thoo, J. B. (1995). On the Geometry of Halley’s

Method. The American Mathematical Monthly, 102(5),

417–426. DOI: 10.1080/00029890.1995.12004594

Soomro, S. A., Shaikh, A. A., Qureshi, S., & Ali, B. (2023). A

Modified Hybrid Method For Solving Non-Linear

Equations With Computational Efficiency. VFAST

Transactions on Mathematics, 11(2), 126–137. DOI:

10.21015/vtm.v11i2.1620

Silalahi, B. P., Laila, R., & Sitanggang, I. S. (2017). A

combination method for solving nonlinear equations.

IOP Conference Series: Materials Science and

Engineering, 166(1), 12011.

Tasiu, A. R., Abbas, A., Alhassan, M. N., & Umar, A. N. (2020).

Comparative Study on Some Methods of Handling

Nonlinear Equations. Anale. Seria Informatică, XVIII(2),

2–5.

Thota, S., Gemechu, T., & Ayoade, A. A. (2023). on New Hybrid

Root-Finding Algorithms for Solving Transcendental

Equations Using Exponential and Halley’S Methods.

Ural Mathematical Journal, 9(1), 176–186. DOI:

10.15826/umj.2023.1.016

Weerakoon, S., & Fernando, T. (2000). A variant of Newton’s

method with accelerated third-order convergence.

Applied Mathematics Letters, 13(8), 87–93.

Yasir Abdul-Hassan, N. (2016). New Predictor-Corrector

Iterative Methods with Twelfth-Order Convergence for

Solving Nonlinear Equations. American Journal of

Applied Mathematics, 4(4), 175. DOI:

10.11648/j.ajam.20160404.12

