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ABSTRACT: 

This work presents a new iterative method for solving single-variable nonlinear equations. The method achieves ninth-order 

convergence with just three derivative evaluations per step, offering both accuracy and lower computational cost. Unlike 

slower bracketing methods, it builds on faster open methods, though these may sometimes fail to converge. By blending 

ideas from Newton's and Halley's methods, the new approach provides strong performance, as shown by a detailed 

convergence analysis and MATLAB tests. Compared to existing techniques, it finds solutions in fewer steps and less time, 

making it especially effective for difficult nonlinear problems 

KEYWORDS: Newton’s Method, Variant of Newton’s Method, Halley’s Method, Efficiency Index, Nonlinear 

Equations. 

1. INTRODUCTION 

         Iterative root‐finding algorithms are indispensable across 

engineering, physics, and applied mathematics, underpinning 

models from nonlinear structural analysis to parameter 

estimation in dynamical systems (Soomro et al., 2023;  Naseem 

et al., 2022). Bracketing methods, such as the bisection 

algorithm, guarantee convergence, but only at a linear rate, 

making them impractical for high-precision requirements 

(Goodman et al., 2017) . Open methods, such as Newton’s 

method (NM), achieve quadratic convergence but may diverge if 

the initial estimate is poor or if derivative evaluations are 

expensive (Kumar et al., 2013).Various mathematical models 

have been developed for solving differential equations, including 

the Successive Approximation Method (Sabali et al., 2021), the 

Adomian Decomposition Method (Azzo et al., 2022), and the 

Residual Power Series Method (Manaa et al., 2021). 

        Halley’s method (HM) mitigates this by incorporating 

second derivatives to attain cubic convergence, but the extra 

derivative computation can outweigh its faster convergence in 

practice(Elhasadi, 2007). To reduce sensitivity to starting guesses 

while retaining high convergence order, variants such as the 

Weerakoon–Fernando third‐order scheme (Weerakoon et al., 

2000) and sixth‐order Halley‐type modifications (Noor et al., 

2007) have been proposed; however, each entails trade‐offs 

between per‐iteration cost and overall efficiency. Silalahi et al. 

(2017), introduced a method, known as NIH, that combines the 

Halley method, the Newton method, and the Newton inverse 

method. 

        In this paper, we propose the Variant Newton–Halley 

Method (VNHM), which combines a third-order Newton-type 

predictor with a Halley-type corrector to achieve ninth-order 
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convergence. Moreover, we prove VNHM’s convergence order 

and compute its efficiency index via a detailed Taylor series 

analysis. Furthermore, we demonstrate through MATLAB 

experiments on eight benchmark functions that VNHM 

consistently reduces the number of iterations and CPU time 

compared to Newton’s method, Halley’s method, and the 

Weerakoon–Fernando variant. Even though VNHM can reach 

very high accuracy in just a few steps when you can cheaply 

compute its needed derivatives, it does become overly complex 

and expensive if those derivatives are hard to get or noisy. 

Because it relies on calculating both first- and second-order 

derivatives every time, and its guaranteed success only applies 

when you start fairly close to the proper solution, it is less well 

suited to cases where derivative information is costly, unreliable, 

or when you only need a rough answer. The results were 

compared with those obtained from the methods in (Silalahi et 

al., 2017; Weerakoon et al., 2000). 

        The remainder of this paper is organized as follows. Section 

2 reviews NM, HM, Weerakoon–Fernando variant, and NIH 

before introducing VNHM. Section 3 develops the convergence 

analysis. Section 4 describes the test functions and their known 

roots. Section 5 presents numerical comparisons of iteration 

counts, execution times, and accuracy. Section 6 concludes and 

outlines directions for extending VNHM to complex‐root 

problems. 

Iterative Methods: 

        This section will introduce the fundamental ideas behind 

the NM, HM, VNM, and NIH. Furthermore, the VNHM will be 

presented. 
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Newton’s Method (NM) 

        For the nonlinear scalar equation ᶂ(ᶍ𝑖) = 0, NM is among 

the most effective root-finding methods (Madhu et al., 2016). 

The method's quadratic convergence rate makes it likely the most 

widely used approach for solving nonlinear equations. However, 

if poor initial assumptions are made, it can occasionally be 

weakened. However, to use it as a reference point, it needs to be 

calculated as a function's derivative, which is not always simple 

or even possible, or it cannot be expressed in terms of an 

elementary function (McDonough, 2007;Kusni et al., 2016). 

Newton's method may converge more quickly than any other 

method, but performance comparison requires taking both 

convergence speed and cost into account (Azure et al., 2019). 

The general form of the NM is: 

ᶍ𝑖+1 = ᶍ𝑖 −
ᶂ(ᶍ𝑖)

ᶂ′(ᶍ𝑖)
.     𝑖 = 0,1,2, ….          (1) 

 

Algorithm (NM) (Tasiu et al., 2020) 

Given a sufficiently smooth function ᶂ: 𝐷 ⊆ ℝ ⟶ ℝ with 

ᶂ′(ᶍ𝑖) ≠0 on 𝐷. 

Input: Initial approximation (ᶍ0) ∊ 𝐷, error tolerance (𝑇𝑜𝑙 >

0), and the maximum number of iterations (N). 

Output: An approximation root, ᶍ𝑖+1, or a message of failure if 

the tolerance is not met within 𝑁 iterations. 

Step 1: Set i = 0. 

Step 2: Repeat until |ᶂ′(ᶍ𝑖)| < 𝑇𝑜𝑙 or the maximum number of 

iterations is reached: 

compute ᶍ𝑖+1 = ᶍ𝑖 −
ᶂ(ᶍ𝑖)

ᶂ′(ᶍ𝑖)
 . 

Step 3: If |ᶍ𝑖+1 − ᶍ𝑖| < Tol, then return ᶍ𝑖+1 as the approximate 

solution and stop. 

Step 4: Set 𝑖 = 𝑖 + 1 and go to step 2. 

A Variant of Newton’s Method (VNM) 

        In 2000, Weerakoon and Fernando showed that the method 

with third-order convergence is the outcome of deriving NM, 

which entails an indefinite integral of the function's derivative 

and an approximate rectangle for the relevant area (Weerakoon 

et al., 2000) . This modification reduces the local truncation error 

by using a trapezoid rather than a rectangle to approximate this 

indefinite integral. Iterations can be performed without the need 

to compute the function's second or higher derivatives, which is 

the VNM's most significant feature. The general form of the 

VNM is: 

𝑦𝑖+1 = ᶍ𝑖 −
2ᶂ(ᶍ𝑖)

[ᶂ′(ᶍ𝑖)+ᶂ′(ᶍ𝑖+1)]
.   𝑖 = 0,1,2, ….         (2) 

 

Here ᶍ𝑖+1is obtained using the standard Newton iteration. 

Algorithm (VNM) 

        Given a function ᶂ: 𝐷 ⊆ ℝ ⟶ ℝ,  assuming ᶂ ∊ 𝐶1(𝐷) 

With a simple root 𝜈 ∊ 𝐷 of ᶂ, so ᶂ(ᶍ𝑖) =0,  ᶂ′(ᶍ𝑖) ≠0. 

Input: Initial approximation ᶍ0 ∊ 𝐷, error tolerance 𝑇𝑜𝑙 > 0, 

optional maximum number of iterations N. 

Output: Return ᶍ𝑖+1 as the root approximation or return a ‘no 

convergence’ when the tolerance criterion is not met within 𝑁 

Iterations. 

Step 1: Set i = 0, calculate the first Newton iteration: 

ᶍ1 = ᶍ0 −
ᶂ(ᶍ0)

ᶂ′(ᶍ0)
. 

Step 2: While 𝑖 <  𝑁  repeat: 

Step 3: Compute the predictor, which was already computed in 

Step 1: 

ᶍ𝑖+1 = ᶍ𝑖 −
ᶂ(ᶍ𝑖)

ᶂ′(ᶍ𝑖)
. 

Step 4: Calculate the corrector: 

𝑦𝑖+1 = ᶍ𝑖 −
2ᶂ(ᶍ𝑖)

[ᶂ′(ᶍ𝑖)+ᶂ′(ᶍ𝑖+1)]
. 

Step 5: If |𝑦𝑖+1 − 𝑦𝑖| < Tol, then return y𝑖+1 and terminate. 

Step 6: Set 𝑖 = 𝑖 + 1and go to step 3. 

Halley’s Iteration Method (HM) 

        Halley’s method is a third‐order root‐finding algorithm 

closely related to Newton’s method (NM). Whereas NM uses the 

tangent‐line approximation of ᶂ to achieve quadratic 

convergence, Halley’s method incorporates second‐derivative 

information to accelerate convergence to cubic order (Scavo et 

al., 1995). Given the current iteration ᶍ𝑖, Halley’s update is: 

 

ᶍ𝑖+1 = ᶍ𝑖 −
2ᶂ(ᶍ𝑖)ᶂ′(ᶍ𝑖)

2(ᶂ′(ᶍ𝑖))
2

−ᶂ(ᶍ𝑖)ᶂ′′(ᶍ𝑖)
 .           𝑖 = 0,1,2, ….      (3) 

 

Both NM and HM belong to a wider family of explicit iterative 

schemes that exploit successively higher derivatives to improve 

convergence order(Yasir Abdul-Hassan, 2016). 

Algorithm 2.3. (HM) (Thota et al., 2023) 

Given a sufficiently smooth function ᶂ: 𝐷 ⊆ ℝ ⟶ ℝ,  assuming 

ᶂ ∊ 𝐶2(𝐷) and 𝜈 ∊ 𝐷 is a simple root of ᶂ, so ᶂ(ᶍ𝑖) =0, 

 ᶂ′(ᶍ𝑖) ≠0,  ᶂ′′(ᶍ𝑖) ≠0. 

Input: An initial guess ᶍ0 ∊ 𝐷An error tolerance 𝑇𝑜𝑙 > 0, and a 

maximum number of iterations 𝑁. 

Output: An approximation root, ᶍ𝑖+1, or a message of failure if 

no convergence is achieved within 𝑁 iterations. 

Step 1: Set i = 0. 

Step 2: While 𝑖 <  𝑁  do, 

Step 3: For a given ᶍ0, calculate Halley’s update: 

ᶍ𝑖+1 = ᶍ𝑖 −
2ᶂ(ᶍ𝑖)ᶂ′(ᶍ𝑖)

2(ᶂ′(ᶍ𝑖))
2

−ᶂ(ᶍ𝑖)ᶂ′′(ᶍ𝑖)
. 

Step 4: If |ᶍ𝑖+1 − ᶍ𝑖| < Tol, then return ᶍ𝑖+1 and stop. 

Step 5: Set 𝑖 = 𝑖 + 1and go to step 3. 

Combination of the Newton Method, the Newton Inverse 

Method, and the Halley Method (NIH) 

        This approach solves nonlinear equations by combining the 

Newton method, the Newton inverse method, and the Halley 

method, as introduced by (Silalahi et al., 2017). 

Algorithm. (NIH) 

Given a sufficiently smooth function ᶂ: 𝐷 ⊆ ℝ ⟶ ℝ,  assuming 

ᶂ ∊ 𝐶2(𝐷). 

Input: An initial guess ᶍ0 ∊ 𝐷An error tolerance 𝑇𝑜𝑙 > 0, and a 

maximum   number of iterations 𝑁. 

Output: An approximation root, 𝑧𝑖+1, or a message of failure if 

convergence is not achieved within 𝑁 iterations. 

Step 1: Set i = 0. 

Step 2: While 𝑖 <  𝑁  do, 

Step 3: For a given ᶍ0, compute ᶍ𝑖+1 = ᶍ𝑖 −
ᶂ(ᶍ𝑖)

ᶂ′(ᶍ𝑖)
  

             and ᶍ𝑖
∗ = ᶍ𝑖 −

ᶂ(ᶍ𝑖)

2
(

1

ᶂ′(ᶍ𝑖)
+

1

ᶂ′(ᶍ𝑖+1)
). 

Step 4: Evaluate 𝑧𝑖+1 = ᶍ𝑖
∗ −

2ᶂ(ᶍ𝑖
∗)ᶂ′(ᶍ𝑖

∗)

2(ᶂ′(ᶍ𝑖
∗))

2
−ᶂ(ᶍ𝑖

∗)ᶂ′′(ᶍ𝑖
∗)

 . 

Step 5: If |𝑧𝑖+1 − 𝑧𝑖|  < 𝑇𝑜𝑙 or the maximum number of 

iterations is reached, terminate; otherwise, return to Step 4. 
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Proposed Variant Newton–Halley Method (VNHM) 

        The Proposed Variant Newton–Halley Method (VNHM) 

combines the strengths of predictor–corrector techniques with the 

fast convergence of higher-order iterative schemes. The method 

is developed through a detailed Taylor series analysis. VNHM 

begins with a Variant Newton Method (VNM) step to ensure 

stability, followed by a Halley-type corrector to enhance the 

convergence rate without sacrificing accuracy. The main 

objective is to provide a method that is both efficient and reliable, 

while keeping the computational requirements reasonable. 

 

𝑧𝑖+1 = 𝑦𝑖+1 −
2ᶂ(𝑦𝑖+1)ᶂ′(𝑦𝑖+1)

2ᶂ′2(𝑦𝑖+1)−ᶂ(𝑦𝑖+1)ᶂ′′(𝑦𝑖+1)
, 𝑖 = 0,1,2, …           (4) 

where 𝑦𝑖+1 = ᶍ𝑖 −
2ᶂ(ᶍ𝑖)

[ᶂ′(ᶍ𝑖)+ᶂ′(ᶍ𝑖+1)]
 and ᶍ𝑖+1 = ᶍ𝑖 −

ᶂ(ᶍ𝑖)

ᶂ′(ᶍ𝑖)
. 

 

In this section, we provide all the essential steps and explanations 

needed for full understanding and transparency, as is standard for 

introducing a new algorithm in numerical analysis. 

Derivation of the Method: 

        Suppose you have a function ᶂ: 𝐷 ⊆ ℝ ⟶ ℝ that’s smooth 

enough, and you want to find a simple root (i.e., ᶂ(ᶍ∗) =0, and 

 ᶂ′(ᶍ∗) ≠0). Start with an initial guess ᶍ0 close to the root. The 

method proceeds in three clear steps: 

Step 1: Newton’s Predictor. 

ᶍ𝑖+1 = ᶍ𝑖 −
ᶂ(ᶍ𝑖)

ᶂ′(ᶍ𝑖)
. 

This is the usual Newton step, giving a better estimate for the 

root. 

Step 2: Variant Newton (VNM) Correction 

𝑦𝑖+1 = ᶍ𝑖 −
2ᶂ(ᶍ𝑖)

[ᶂ′(ᶍ𝑖)+ᶂ′(ᶍ𝑖+1)]
. 

Here, you average the derivative at xₙ and yₙ (an approach 

inspired by the Weerakoon–Fernando method) to get a more 

stable, higher-order update, but without needing second 

derivatives. This step often does a good job of improving the 

guess, especially if Newton’s step was unstable. 

Step 3: Halley’s High-Order Corrector. 

𝑧𝑖+1 = 𝑦𝑖+1 −
2ᶂ(𝑦𝑖+1)ᶂ′(𝑦𝑖+1)

2ᶂ′2(𝑦𝑖+1)−ᶂ(𝑦𝑖+1)ᶂ′′(𝑦𝑖+1)
. 

Finally, Halley’s formula is used at 𝑦𝑖+1. Since 𝑦𝑖+1 is already a 

decent approximation, applying Halley’s step here delivers even 

higher accuracy, usually more than what’s possible with either 

Newton or VNM alone. 

Algorithm (VNHM) 

Given ᶂ: 𝐷 ⊆ ℝ ⟶ ℝ  with ᶂ,  ᶂ′,  ᶂ′′continuous and 𝜈 ∊ 𝐷 is a 

simple root of ᶂ. 

Input: Initial guess ᶍ0 ∊ 𝐷, tolerance 0 < 𝑇𝑜𝑙 < 1, and a 

maximum number of iterations 𝑁. 

Output: An approximation root, 𝑧𝑖+1, or a message of failure if 

no convergence is achieved within 𝑁 iterations. 

Step 1: Set i = 0. 

Step 2: For a given ᶍ0, calculate the predictor step, which 

involves 

            ᶍ𝑖+1 = ᶍ𝑖 −
ᶂ(ᶍ𝑖)

ᶂ′(ᶍ𝑖)
,  

            𝑦𝑖+1 = ᶍ𝑖 −
2ᶂ(ᶍ𝑖)

[ᶂ′(ᶍ𝑖)+ᶂ′(ᶍ𝑖+1)]
. 

Step 3: Evaluate the Halley correction step as follows: 

𝑧𝑖+1 = 𝑦𝑖+1 −
2ᶂ(𝑦𝑖+1)ᶂ′(𝑦𝑖+1)

2ᶂ′2(𝑦𝑖+1) − ᶂ(𝑦𝑖+1)ᶂ′′(𝑦𝑖+1)
. 

Step 4: If |z𝑖+1 − z𝑖| < Tol, then return z𝑖+1 as the approximate 

solution and stop. 

Step 5: Set 𝑖 = 𝑖 + 1. If 𝑖 < 𝑁, go to step 2; otherwise, return to 

the algorithm failed to converge. 

Remarks and Limitations: 

        Stability: As with all open (non-bracketing) methods, 

VNHM is not magic. If you start too far from the root, the method 

may fail to converge or may diverge entirely. Applicability: 

VNHM is most useful when you need high precision and have 

easy access to both first and second derivatives. If calculating 

derivatives is expensive or at risk of error, this method may not 

be ideal. 

Convergence Analysis: 

        In this section, we present the convergence analysis of the 

new three-step iterative method (4) for solving nonlinear 

equations 

Theorem: Let 𝜈 be a simple zero of a function that is 

continuously differentiable up to order eight on an open interval. 

If the initial guess 𝑥0  is chosen sufficiently close to 𝜈, then the 

three‐step VNHM iteration in Algorithm 4 converges to 𝜈 with 

ninth‐order accuracy.

Proof: Since ᶂ(𝜈) = 0 and 𝜖𝑖 = ᶍ𝑖 − 𝜈, Taylor’s theorem around 

the simple root 𝜈 gives 

 

 ᶂ(ᶍ𝑖) = (ᶍ𝑖 − 𝜈)ᶂ′(𝜈) +
(ᶍ𝑖−𝜈)2

2!
ᶂ(2)(𝜈) +

(ᶍ𝑖−𝜈)3

3!
ᶂ(3)(𝜈) +

(ᶍ𝑖−𝜈)4

4!
ᶂ(4)(𝜈) + ⋯.   (5) 

This expansion will form the basis for our error‐recurrence analysis. By taking the first derivative of (5) with respect to ᶍ𝑖, we obtain 

 ᶂ′(ᶍ𝑖) = ᶂ′(𝜈) + (ᶍ𝑖 − 𝜈)ᶂ′′(𝜈) +
(ᶍ𝑖−𝜈)2

2!
ᶂ(3)(𝜈) +

(ᶍ𝑖−𝜈)3

3!
ᶂ(4)(𝜈) + ⋯.    (6) 

Substituting 𝜖𝑖 = ᶍ𝑖 − 𝜈 in (5) and (6), we have 

 ᶂ(ᶍ𝑖) = 𝜖𝑖ᶂ′(𝜈) +
(𝜖𝑖)2

2!
ᶂ′′(𝜈) +

(𝜖𝑖)3

3!
ᶂ(3)(𝜈) +

(𝜖𝑖)4

4!
ᶂ(4)(𝜈) + 𝑂(𝜖𝑖

5),    (7) 

where 𝑂(𝜖𝑖
5) represents all terms of order 5 and higher. 

 ᶂ′(ᶍ𝑖) =  ᶂ′(𝜈) + 𝜖𝑖ᶂ′′(𝜈) + +
(𝜖𝑖)2

2!
ᶂ(3)(𝜈) +

(𝜖𝑖)3

3!
ᶂ(4)(𝜈) + 𝑂(𝜖𝑖

4).    (8) 

From (7) and (8), we get 

 
ᶂ(ᶍ𝑖)

ᶂ′(ᶍ𝑖)
=  

𝜖𝑖ᶂ′(𝜈)+
(𝜖𝑖)

2

2!
ᶂ′′(𝜈)+𝑂(𝜖𝑖

3)

ᶂ′(𝜈)+𝜖𝑖ᶂ′′(𝜈)+𝑂(𝜖𝑖
2)

.         (9) 

When (9) is substituted into (1) and used ᶍ𝑖+1 = 𝜖𝑖+1
ᶍ

+ 𝜈, the result is 

 𝜖𝑖+1
ᶍ

= 𝜖𝑖 −
𝜖𝑖ᶂ′(𝜈)+

(𝜖𝑖)
2

2!
ᶂ′′(𝜈)+𝑂(𝜖𝑖

3)

ᶂ′(𝜈)+𝜖𝑖ᶂ′′(𝜈)+𝑂(𝜖𝑖
2)

.        (10) 

For small 𝜖𝑖, approximation 
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 𝜖𝑖+1
ᶍ

= 𝜖𝑖 −
𝜖𝑖+

(𝜖𝑖)
2

2!

ᶂ′′(𝜈)

ᶂ′(𝜈)

1−𝜖𝑖
ᶂ′′(𝜈)

ᶂ′(𝜈)

.                                                                                                            (11) 

Using the binomial expansion (i.e. 
1

1+u
= 1 − 𝑢 + 𝑢2 − 𝑢3 + ⋯  ), we get 

 𝜖𝑖+1
ᶍ

= 𝜖𝑖 − (𝜖𝑖 +
(𝜖𝑖)2

2!

ᶂ′′(𝜈)

ᶂ′(𝜈)
) (1 − 𝜖𝑖

ᶂ′′(𝜈)

ᶂ′(𝜈)
+ (𝜖𝑖

ᶂ′′(𝜈)

ᶂ′(𝜈)
)

2

− ⋯ ).                  (12) 

So, the second-order binomial expansion gives 

  𝜖𝑖+1
ᶍ

= 𝜖𝑖 − (𝜖𝑖 +
𝜖𝑖

2

2!

ᶂ′′(𝜈)

ᶂ′(𝜈)
− 𝜖𝑖

2 ᶂ′′(𝜈)

ᶂ′(𝜈)
+ 𝑂(𝜖𝑖

3)).                                                                                  (13) 

Hence 

  𝜖𝑖+1
ᶍ

=
ᶂ′′(𝜈)

2ᶂ′(𝜈)
𝜖𝑖

2 + 𝑂(𝜖𝑖
3) = 𝐶2 𝜖𝑖

2 + 𝑂(𝜖𝑖
3),                                                                (14) 

where 𝑐2  is defined as the constant 
ᶂ′′(𝜈)

2ᶂ′(𝜈)
. This shows that Newton’s iteration, ᶍ𝑖+1, converges with order 2. 

Now, we want to determine how 𝑦𝑖+1 = ᶍ𝑖 −
2ᶂ(ᶍ𝑖)

ᶂ′(ᶍ𝑖)+ᶂ′(ᶍ𝑖+1)
 converges to 𝜈. 

Taylor expansion of 𝑓(ᶍ𝑖) around  𝜈 is 

 ᶂ(ᶍ𝑖) = (ᶍ𝑖 − 𝜈)ᶂ′(𝜈) +
(ᶍ𝑖−𝜈)2

2!
ᶂ(2)(𝜈) +

(ᶍ𝑖−𝜈)3

3!
ᶂ(3)(𝜈) + 𝑂(ᶍ𝑖 − 𝜈)4.                                               (15) 

Since 𝜖𝑖 = ᶍ𝑖 − 𝜈, 

 ᶂ(ᶍ𝑖) = 𝜖𝑖ᶂ′(𝜈) +
(𝜖𝑖)2

2!
ᶂ′′(𝜈) +

(𝜖𝑖)3

3!
ᶂ(3)(𝜈) + 𝑂(𝜖𝑖

4).                                          (16) 

 ᶂ′(ᶍ𝑖) = ᶂ′(𝜈) + (ᶍ𝑖 − 𝜈)ᶂ′′(𝜈) +
(ᶍ𝑖−𝜈)2

2!
ᶂ(3)(𝜈) + 𝑂(ᶍ𝑖 − 𝜈)3.                                                 (17) 

Similarly, for the iteration 𝑖 + 1 we have 

 ᶂ′(ᶍ𝑖+1) =  ᶂ′(𝜈) + (ᶍ𝑖+1 − 𝜈)ᶂ′′(𝜈) +
(ᶍ𝑖−𝜈)2

2!
ᶂ(3)(𝜈) + 𝑂(ᶍ𝑖 − 𝜈)3.                                                            (18) 

Substituting 𝜖𝑖 = ᶍ𝑖 − 𝜈 and ᶍ𝑖+1 − 𝜈 = 𝐶2𝜖𝑖 
2, we have 

 ᶂ′(ᶍ𝑖+1) = ᶂ′(𝜈) + 𝐶2𝜖𝑖
2ᶂ′′(𝜈) +

(𝐶2𝜖𝑖
2)2

2
ᶂ(3)(𝜈) + 𝑂(𝜖𝑖

4).                                                            (19) 

ᶂ′(ᶍ𝑖) + ᶂ′(ᶍ𝑖+1) = (ᶂ′(𝜈) + 𝜖𝑖ᶂ′′(𝜈) +
𝜖𝑖

2

2
ᶂ(3)(𝜈) +

4𝜖𝑖
3

4∗6
ᶂ(4)(𝜈) + 𝑂(𝜖𝑖

5) ) +     (ᶂ′(𝜈) + 𝐶2𝜖𝑖
2ᶂ′′(𝜈) +

𝐶2
2𝜖𝑖

4

2
ᶂ(3)(𝜈) +

𝐶2
3𝜖𝑖

6

6
ᶂ(4)(𝜈) +

𝑂(𝜖𝑖
5)), = 2ᶂ′(𝜈) + 𝜖𝑖ᶂ(3)(𝜈) + (

1

2
ᶂ′′(𝜈) + 𝐶2ᶂ′′(𝜈)) 𝜖𝑖

2 +
1

6
ᶂ(4)(𝜈)𝜖𝑖

3 + 𝑂(𝜖𝑖
4).                                    (20) 

By substituting (18) and (20) into 𝑦𝑖+1in (2), we obtain 

 𝑦𝑖+1 = ᶍ𝑖 −

2(𝜖𝑖ᶂ′(𝜈)+
𝜖𝑖

2

2
ᶂ′′(𝜈)+

𝜖𝑖
3

6
ᶂ(3)(𝜈)+𝑂(𝜖𝑖

4))

2ᶂ′(𝜈)+𝜖𝑖ᶂ′′(𝜈)+(
1

2
ᶂ(3)(𝜈)+𝐶2ᶂ′′(𝜈))𝜖𝑖

2+
1

6
ᶂ(4)(𝜈)𝜖𝑖

3+O(𝜖𝑖
4)

 .                                                        (21) 

Subtracting 𝜈 from both sides of (21) and let 𝜖𝑖+1
𝑦

= 𝑦𝑖+1 − 𝜈, we obtain 

𝜖𝑖+1
𝑦

= 𝜖𝑖 − [2𝜖𝑖ᶂ′(𝜈) + 𝜖𝑖
2ᶂ′′(𝜈) +

𝜖𝑖
3

3
ᶂ(3)(𝜈) + 𝑂(𝜖𝑖

4)] [1/ (2ᶂ′(𝜈) + 𝜖𝑖ᶂ′′(𝜈) +  (
1

2
ᶂ(3)(𝜈) + 𝐶2ᶂ′′(𝜈)) 𝜖𝑖

2 + O(𝜖𝑖
3))].

 (22) 

Since 

1/ (2ᶂ′(𝜈) + 𝜖𝑖ᶂ′′(𝜈) + (
1

2
ᶂ(3)(𝜈) + 𝐶2ᶂ′′(𝜈)) 𝜖𝑖

2) =
1

2ᶂ′(𝜈)
[1/ (1 + 𝜖𝑖

ᶂ′′(𝜈)

2ᶂ′(𝜈)
+ (

ᶂ(3)(𝜈)

4ᶂ′(𝜈)
+      

𝐶2

2ᶂ′(𝜈)
ᶂ′′(𝜈)) 𝜖𝑖

2)],          (23) 

The binomial expansion yields 

𝜖𝑖+1
𝑦

=
1

2ᶂ′(𝜈)
[1 −

𝜖𝑖ᶂ′′(𝜈)

2ᶂ′(𝜈)
− (

ᶂ(3)(𝜈)

4ᶂ′(𝜈)
+

𝐶2
2ᶂ′(𝜈)

ᶂ′′(𝜈)) 𝜖𝑖
2 + (

𝜖𝑖ᶂ′′(𝜈)

2ᶂ′(𝜈)
+ (

ᶂ(3)(𝜈)

4ᶂ′(𝜈)
+

𝐶2
2ᶂ′(𝜈)

ᶂ′′(𝜈)) 𝜖𝑖
2)

2

+    𝑂(𝜖𝑖
5)] = 𝜖𝑖 −

(2𝜖𝑖ᶂ′(𝜈) + 𝜖𝑖
2ᶂ′′(𝜈) +

𝜖𝑖
3

3
ᶂ(3)(𝜈) + 𝑜(𝜖𝑖

4)) (
1

2ᶂ′(𝜈)
(1 −

𝜖𝑖ᶂ′′(𝜈)

2ᶂ′(𝜈)
−

ᶂ(3)(𝜈)

4ᶂ′(𝜈)
−   

𝐶2ᶂ′′(𝜈)

2ᶂ′(𝜈)
𝜖𝑖

2 +
𝜖𝑖

2ᶂ′′(𝜈)2

4ᶂ′(𝜈)2 +
𝜖𝑖ᶂ′′(𝜈)

ᶂ′(𝜈)
(

ᶂ(3)(𝜈)

4ᶂ′(𝜈)
+

𝐶2ᶂ′′(𝜈)

2ᶂ′(𝜈)
) 𝜖𝑖

2 +

𝑂(𝜖𝑖
4))).              (24) 

Substituting 𝐶𝑛 =
ᶂ(𝑛)(𝜈)

𝑛!ᶂ′(𝜈)
  into (24), we yield 

𝜖𝑖+1
𝑦

= 𝜖𝑖 − (2𝜖𝑖ᶂ′(𝜈) + 𝜖𝑖
2ᶂ′′(𝜈) +

𝜖𝑖
3

3
ᶂ(3)(𝜈) + 𝑂(𝜖𝑖

4)) (
1

2ᶂ′(𝜈)
(1 − 𝜖𝑖𝐶2 − 𝜖𝑖

2 3𝐶3

2
− 𝐶2

2𝜖𝑖
2 +  𝜖𝑖

2𝐶2
2 + 𝜖𝑖

3𝐶2
2 + 2𝜖𝑖

3𝐶2
4 + 𝑂(𝜖𝑖

4))).   

            (25)                                                    

= 𝜖𝑖 − (2𝜖𝑖ᶂ′(𝜈) + 𝜖𝑖
2ᶂ′′(𝜈) +

𝜖𝑖
3

3
ᶂ(3)(𝜈) + 𝑜(𝜖𝑖

4)) ∗ (
1

2ᶂ′(𝜈)
−

𝐶2

2ᶂ′(𝜈)
𝜖𝑖 + (

3𝐶3

2
+ 𝐶2

2 − 𝐶2
2)

𝜖𝑖
2

2ᶂ′(𝜈)
+

(𝐶2
2+2𝐶2

4)

2ᶂ′(𝜈)
𝜖𝑖

3 + 𝑂(𝜖𝑖
4)). (26) 

After some algebra, we get 

    𝜖𝑖+1
𝑦

= (𝐶2
2 +

𝐶3

2
) 𝜖𝑖

3 + 𝑂(𝜖𝑖
4).                                                                        (27) 

This demonstrates clearly that 𝑦𝑖+1 in (2) has third-order convergence 

Now, expanding ᶂ(𝑦𝑖+1) around 𝜈 gives 

ᶂ(𝑦𝑖+1) = (𝑦𝑖+1 − 𝜈)ᶂ′(𝜈) +
(𝑦𝑖+1−𝜈)2

2
ᶂ′′(𝜈) +

(𝑦𝑖+1−𝜈)3

3!
ᶂ′′′(𝜈) +

(𝑦𝑖+1−𝜈)4

4!
ᶂ(4)(𝜈) +  

(𝑦𝑖+1−𝜈)5

5!
ᶂ(5)(𝜈) + 𝑂((𝑦𝑖+1 − 𝜈)6). (28) 
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 ᶂ′(𝑦𝑖+1) = ᶂ′(𝜈) + (𝑦𝑖+1 − 𝜈)ᶂ′′(𝜈) +
(𝑦𝑖+1−𝜈)2

2
ᶂ′′′(𝜈) +

(𝑦𝑖+1−𝜈)3

3!
ᶂ(4)(𝜈) + 𝑂((𝑦𝑖+1 − 𝜈)4).       (29) 

ᶂ″(𝑦𝑖+1) = ᶂ′′(𝜈) + (𝑦𝑖+1 − 𝜈)ᶂ′′′(𝜈) +
(𝑦𝑖+1−𝜈)2

2
ᶂ(4)(𝜈) +

(𝑦𝑖+1−𝜈)3

3!
ᶂ(5)(𝜈) +

(𝑦𝑖+1−𝜈)4

4!
ᶂ(6)(𝜈) +   𝑂((𝑦𝑖+1 − 𝜈)5).   (30) 

Replacing 𝑦𝑖+1 − 𝜈 with 𝐾𝜖𝑖
3where 𝐾 = 𝐶2

2 +
𝐶3

2
 in (29)- (31), gives 

 ᶂ(𝑦𝑖+1) = 𝐾𝜖𝑖
3ᶂ′(𝜈) +

𝐾2𝜖𝑖
6

2
ᶂ′′(𝜈) +

𝐾3𝜖𝑖
9

3!
ᶂ(3)(𝜈) + 𝑂(𝜖𝑖

12),      (31) 

 ᶂ′(𝑦𝑖+1) = ᶂ′(𝜈) + 𝐾𝜖𝑖
3 ᶂ′′(𝜈) +

(K𝜖𝑖
3 )

2

2
ᶂ(3)(𝜈) +

(K𝜖𝑖
3 )

3

3!
ᶂ(4)(𝜈) + 𝑂 ((𝜖𝑖

3 )
4

),                             (32) 

 ᶂ″(𝑦𝑖+1) = ᶂ′′(𝜈) + K𝜖𝑖
3ᶂ(3)(𝜈) +

(𝐾𝜖𝑖
3)

2

2
ᶂ(4)(𝜈) +

(𝐾𝜖𝑖
3)

3

3!
ᶂ(5)(𝜈) +

(𝐾𝜖𝑖
3)

4

4!
ᶂ(6)(𝜈) +    𝑂 ((𝐾𝜖𝑖

3)
5

).      (33) 

 

2ᶂ(𝑦𝑖+1)ᶂ′(𝑦𝑖+1) = (2𝐾𝜖𝑖
3ᶂ′(𝜈) + 𝐾2𝜖𝑖

6ᶂ′′(𝜈) +
𝐾3𝜖𝑖

9

3
ᶂ(3)(𝜈)) (ᶂ′(𝜈) + 𝐾𝜖𝑖

3 ᶂ′′(𝜈) +      
𝐾2𝜖𝑖

6

2
ᶂ(3)(𝜈)    +

𝐾3𝜖𝑖
9

6
ᶂ(4)(𝜈)) =

2𝐾𝜖𝑖
3ᶂ′2(𝜈) + 3𝐾2𝜖𝑖

6ᶂ′(𝜈)ᶂ′′(𝜈) + (𝐾3ᶂ′′2(𝜈) +
4

3
𝐾3ᶂ′(𝜈)ᶂ(3)(𝜈)) 𝜖𝑖

9 +  𝑂 ((𝜖𝑖
3 )

4
).                             (34) 

2ᶂ′2(𝑦𝑖+1) = (2ᶂ′(𝜈) + 2𝐾3𝜖𝑖
3ᶂ′′(𝜈) + 𝐾2𝜖𝑖

6ᶂ(3)(𝜈) +
𝐾3𝜖𝑖

9

3
ᶂ(4)(𝜈)) (ᶂ′(𝜈) + 𝐾𝜖𝑖

3 ᶂ′′(𝜈) +    
𝐾2𝜖𝑖

6

2
ᶂ(3)(𝜈) +

𝐾3𝜖𝑖
9

6
ᶂ(4)(𝜈)) =

2ᶂ′2
4K𝜖𝑖

3ᶂ′(𝜈)ᶂ′′(𝜈) + (2𝐾2ᶂ′(𝜈)ᶂ(3)(𝜈) + 2𝐾2ᶂ′′2(𝜈)) 𝜖𝑖
6 + (2𝐾3ᶂ′′(𝜈)ᶂ(3)(𝜈) +

2

3
𝐾3ᶂ′(𝜈)ᶂ(4)(𝜈)) 𝜖𝑖

9 +  𝑂 ((𝜖𝑖
3 )

4
).         (35) 

ᶂ(𝑦𝑖+1)ᶂ′′(𝑦𝑖+1) = [𝐾𝜖𝑖
3ᶂ′(𝜈) +

𝐾2

2
𝜖𝑖

6ᶂ′′(𝜈) +
𝐾3

6
𝜖𝑖

9ᶂ′′′(𝜈)] [
ᶂ′′(𝜈) + 𝐾𝜖𝑖

3ᶂ(3)(𝜈)

  +
𝐾2

2
𝜖𝑖

6ᶂ(4)(𝜈)
] = 𝐾𝜖𝑖

3ᶂ′(𝜈)ᶂ′′(𝜈) + (
𝐾2

2
ᶂ′′2(𝜈) +

𝐾2ᶂ′(𝜈)ᶂ(3)(𝜈) ) 𝜖𝑖
6 + ((

𝐾3

6
+

𝐾3

2
) ᶂ′′(𝜈)ᶂ(3)(𝜈) +      

𝐾3

2
ᶂ′(𝜈)ᶂ(4) (𝜈))𝜖𝑖

9.                          (36) 

2ᶂ′2(𝑦𝑖+1) − ᶂ(𝑦𝑖+1)ᶂ′′(𝑦𝑖+1) = [2ᶂ′2(𝜈) + 4𝐾ᶂ′(𝜈)ᶂ′′(𝜈)𝜖𝑖
3

+  (2𝐾2ᶂ′(𝜈)ᶂ(3)(𝜈) + 2𝐾3ᶂ′′2(𝜈)) 𝜖𝑖
6 + (2𝐾3ᶂ′(𝜈)ᶂ(3)(𝜈) +

 
2

3
𝐾3ᶂ′(𝜈)ᶂ(4)(𝜈)) 𝜖𝑖

9 +  𝑂(𝜖𝑖
12)] − [𝐾ᶂ′(𝜈)ᶂ′′(𝜈)𝜖𝑖

3
+ (

𝐾2

2
ᶂ(′′)2 + 𝐾2ᶂ′(𝜈)ᶂ3 (𝜈)) 𝜖𝑖

6 + ((
𝐾3

6
+

𝐾3

2
) ᶂ′′(𝜈)ᶂ(3)(𝜈) +

𝐾3

2
ᶂ′(𝜈)ᶂ(4) (𝜈)) 𝜖𝑖

9 +  𝑂(𝜖𝑖
12) = 2ᶂ′2(𝜈) + 3𝐾ᶂ′(𝜈)ᶂ′′(𝜈)𝜖𝑖

3 + (𝐾2ᶂ′(𝜈)ᶂ′′′(𝜈) +
3

2
𝐾2ᶂ′′2(𝜈))𝜖𝑖

6+(
11𝐾3

6
ᶂ′′

 (𝜈)ᶂ(3)(𝜈) −

 
𝐾3

2
ᶂ′′(𝜈)ᶂ(3)(𝜈) +

𝐾3

6
ᶂ′′(𝜈) ᶂ(4)(𝜈))𝜖𝑖

9 +  𝑂(𝜖𝑖
12).             (37) 

Substituting (34)-(37) into  (4), we obtain 

𝑧𝑖+1 = 𝑦𝑖+1 − [2Kᶂ2(𝜈)𝜖𝑖
3 + 3𝐾2ᶂ′(𝜈)ᶂ′′(𝜈)𝜖𝑖

6 + (𝐾3ᶂ′′2(𝜈) +
4

3
𝐾3ᶂ′(𝜈)ᶂ(3)(𝜈)) 𝜖𝑖

9 +  𝑂(𝜖𝑖
12)] [1/ (2ᶂ′2(𝜈) + 3Kᶂ′(𝜈)ᶂ″(𝜈)𝜖𝑖

3 +

(𝐾2ᶂ′(𝜈)ᶂ(3)(𝜈) +
3

2
𝐾2ᶂ′′2(𝜈)) 𝜖𝑖

6 +  𝑂(𝜖𝑖
12))],              (38) 

= 𝑦𝑖+1 − [2Kᶂ2(𝜈)𝜖𝑖
3 + 3𝐾2ᶂ′(𝜈)ᶂ′′(𝜈)𝜖𝑖

6 + (𝐾2ᶂ′′2(𝜈) +
4

3
𝐾2ᶂ′(𝜈)ᶂ(3)(𝜈)) 𝜖𝑖

9 +

 𝑂(𝜖𝑖
12)] [

1

2ᶂ′2
(𝜈)

(1 (1 +
(3Kᶂ′ (𝜈) ᶂ′′(𝜈))  𝜖𝑖

3

2ᶂ′2
(𝜈)

+
(𝐾2ᶂ′(𝜈)ᶂ(3)(𝜈)+

3

2
𝐾2ᶂ′′2

(𝜈))𝜖𝑖
6

2ᶂ′2
(𝜈)

)⁄ ) +  𝑂(𝜖𝑖
9)] .          (39) 

Using the binomial expansion gives 

𝑧𝑖+1 = 𝑦𝑖+1 − [2Kᶂ′2(𝜈)𝜖𝑖
3 + 3𝐾2ᶂ′(𝜈)ᶂ′′(𝜈)𝜖𝑖

6 + (𝐾3ᶂ′′2(𝜈) +
4

3
𝐾3ᶂ′(𝜈)ᶂ(3)(𝜈)) 𝜖𝑖

9 +  𝑂(𝜖𝑖
12)] 

[
1

2ᶂ′2(𝜈)
(1 −

(3Kᶂ′(𝜈)  ᶂ′′(𝜈))  𝜖𝑖
3

2ᶂ′2
(𝜈)

−
(𝐾2ᶂ′(𝜈)ᶂ(3)(𝜈)+

3

2
𝐾2ᶂ′′2

(𝜈))𝜖𝑖
6

2ᶂ′2
(𝜈)

+ (
(3Kᶂ′(𝜈) ᶂ′′(𝜈)) 

2ᶂ′2
(𝜈)

)
2

𝜖𝑖
6)] +2 (

(3𝐾ᶂ′(𝜈) ᶂ′′(𝜈))  𝜖𝑖
3

2ᶂ′2
(𝜈)

) (
(𝐾2ᶂ′(𝜈)ᶂ(3)(𝜈)+

3

2
𝐾2ᶂ′′2

(𝜈))𝜖𝑖
6

2ᶂ′2
(𝜈)

) −

(
(3Kᶂ′(𝜈)  ᶂ′′(𝜈))  𝜖𝑖

3

2ᶂ′2(𝜈)
)

3

+ 𝑂(𝜖𝑖
12)]                                           (40)

 

= 𝑦𝑖+1 − (2Kᶂ′2(𝜈)𝜖𝑖
3 + 3𝐾2ᶂ′(𝜈)ᶂ′′(𝜈)𝜖𝑖

6 + (𝐾3ᶂ′′2(𝜈) +
4

3
𝐾3ᶂ′(𝜈)ᶂ(3)(𝜈)) 𝜖𝑖

9 + 𝑂(𝜖𝑖
12)) (

1

2ᶂ′2(𝜈)
(1 −

(3K  ᶂ′′(𝜈))  𝜖𝑖
3

2ᶂ′(𝜈)
+

(3𝐾2  ᶂ′′2
(𝜈))  𝜖𝑖

6

2ᶂ′2(𝜈)
−

(𝐾2  ᶂ(3)(𝜈))  𝜖𝑖
6

2ᶂ′(𝜈)
+

(3𝐾3ᶂ′′(𝜈)  ᶂ(3)(𝜈))  𝜖𝑖
9

2ᶂ′2(𝜈)
−

(9𝐾3 ᶂ′′3
(𝜈))  𝜖𝑖

9

8ᶂ′3(𝜈)
)) +  𝑂(𝜖𝑖

12).                                            (41)                                     

Subtracting 𝜈 from both sides and setting 𝜖𝑖+1
𝑧 , we obtain 

   𝜖𝑖+1
𝑧 = 𝑦𝑖+1 − 𝜈 − K 𝜖𝑖

3 + (−
𝐾3ᶂ(3)(𝜈)  

6ᶂ′(𝜈)
+

𝐾3 ᶂ′′2
(𝜈) 

4ᶂ′2(𝜈)
) 𝜖𝑖

9 + 𝑂(𝜖𝑖
12).                                 (42)          

Since 𝑦𝑖+1 − 𝜈= K𝜖𝑖
3, it follows that 

      𝜖𝑖+1
𝑧 = (

𝐾3 ᶂ′′2
(𝜈) 

4ᶂ′2(𝜈)
− 

𝐾3ᶂ(3) (𝜈)   

6ᶂ′(𝜈)
) 𝜖𝑖

9 + 𝑂(𝜖𝑖
12) .                                          (43)          
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Repeating the same algebraic expansion shows that every O(𝜖𝑖
6) The contribution drops out, so the first nonzero term is simplyM𝜖𝑖

9. 

Thus, we have 

 𝜖𝑖+1
𝑧 = M𝜖𝑖

9 + 𝑂(𝜖𝑖
12),                                                                                           (44) 

Where 

  M = 𝐾3 (
 ᶂ′′2

(𝜈) 

4ᶂ′2
(𝜈)

− 
ᶂ(3)(𝜈)  

6ᶂ′(𝜈)
) .                                                                                                                  (45) 

Recall  𝐾 = 𝑐2
2 +

𝐶3

2
 and using some algebra, (45) becomes 

          𝑀 = (𝑐2
2 +

𝐶3

2
 )

3
(

 ᶂ′′2
(𝜈) 

4ᶂ′2(𝜈)
−  

ᶂ(3)(𝜈)  

6ᶂ′(𝜈)
) ,                                                                                 (46) 

where 𝑐𝑛 =
1

𝑛!

ᶂ(𝑛)(𝜈)

ᶂ′(𝜈)
),  n=2,3,4,… 

Therefore, 

𝜖𝑖+1
𝑧 =  [(𝑐2

2 − 𝐶3 ) (𝑐2
2 +

𝐶3

2
 )

3

] 𝜖𝑖
9 + 𝑂(𝜖𝑖

12),

 

Which shows that the order of convergence of our new proposed method (VNHM) defined in (4) is nine. This completes the proof.

 

Testing Functions: 

        We used the same test functions as (Weerakoon et al., 2000) and display the approximate zero 𝜈 found up to the 14 decimal 

place. 

ᶂ1(ᶍ) = ᶍ3 + 4ᶍ2 − 10,                                               𝜈 = 1.36523001341448. 

ᶂ2(ᶍ) = sin2 (ᶍ) − ᶍ2 + 1,                                          𝜈 = 1.40449164821621. 

ᶂ3(ᶍ) = ᶍ2 − 𝑒ᶍ − 3ᶍ + 2,                                          𝜈 = 0.257530285439771. 

ᶂ4(ᶍ) = cos (ᶍ) − ᶍ,                                                    𝜈 = 0.739085133214758. 

ᶂ5(ᶍ) = (ᶍ − 1)3 − 1,                                                  𝜈 = 2. 

ᶂ6(ᶍ) = ᶍ3 − 10,                                      𝜈 = 2.15443469003367. 

ᶂ7(ᶍ) = ᶍexp (ᶍ2) − sin2 (ᶍ) + 3cos (ᶍ) + 5,            𝜈 = −1.20764782713013. 

ᶂ8(ᶍ) = ᶍ2sin2 (ᶍ) + exp [ᶍ2cos (ᶍ)sin (ᶍ)] − 28,    𝜈 = 4.62210416355283. 

ᶂ9(ᶍ) = exp (ᶍ2 + 7ᶍ − 30) − 1,                                𝜈 = 3.

 

Numerical Results: 

        This study was conducted using the following hardware and 

software: a personal computer with the specifics listed below: 

Intel(R) Core (TM) i7-10870H CPU @ 2.20GHz   2.21 GHz, 

RAM 16 GB. The following software is employed: MATLAB 

software and the Windows 11 Ultimate 64-bit operating system. 

Now, solve a few nonlinear equations using the new algorithm 

discovered in this paper. NM, HM, VNM, NIH, and the approach 

presented in this paper are also compared. Compares the number 

of iterations, execution time, and accuracy of the proposed 

method with NM, HM, VNM, and NIH at the set precision. The 

tolerance is Tol=10-14. 

Number of Iterations: 

        Table 1 presents the number of iterations required by each 

method. The results show that VNHM requires the fewest total 

iterations across all test cases, with only 63 iterations in total, 

fewer than NM, HM, VNM, or NIH. It is also important to note 

that the number of iterations depends on both the chosen 

tolerance and the initial starting point; when the initial guess is 

closer to the actual root, fewer iterations are generally needed.

 

Table 1: Comparison of the number of iterations of each method. 

Function ᶍ0 
Number of iterations for each method 

NM HM VNM NIH VNHM 

 

ᶂ1 

-0.5 

1 

2 

-0.3 

132 

6 

6 

54 

74 

4 

4 

53 

7 

4 

4 

7 

7 

3 

3 

11 

4 

3 

3 

4 

ᶂ2 
1 

3 

7 

7 

6 

7 

5 

4 

3 

3 

3 

3 

ᶂ3 
2 

3 

6 

7 

5 

5 

5 

5 

3 

3 

 

3 

4 

 

ᶂ4 

1 

1.7 

-0.3 

5 

5 

6 

4 

4 

5 

3 

4 

4 

3 

3 

3 

2 

3 

3 

ᶂ5 
3.5 

2.5 

8 

7 

5 

5 

6 

5 

3 

3 

4 

3 
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ᶂ6 1.5 7 4 5 3 3 

ᶂ7 -2 9 5 6 4 4 

ᶂ8 5 10 7 6 4 5 

ᶂ9 
3.5 

3.25 

13 

9 

7 

6 

9 

7 

5 

4 

5 

4 

Total  304 210 96 71 63 

 

Execution Time: 

        Table 2 displays each method's execution time. Based on the computational results, the VNHM method has the smallest running 

time overall

Table 2: Execution time for each method across test functions. 

Function ᶍ0 
Execution time (s). 

NM HM VNM NIH VNHM 

 

ᶂ1 

 

-0.5 0.012174 0.006913 0.004003 0.005636 0.003387 

1 0.004597 0.001927 0.002460 0.003301 0.001864 

2 0.003197 0.003522 0.002494 0.001724 0.002106 

-0.3 0.003729 0.007959 0.003999 0.010023 0.002390 

ᶂ2 

 

1 0.005388 0.004280 0.004652 0.012623 0.002643 

3 0.003272 0.006936 0.002767 0.003364 0.002234 

ᶂ3 

 

2 0.002747 0.003331 0.003039 0.003406 0.002665 

3 0.005315 0.002674 0.003690 0.002218 0.002550 

ᶂ4 

 

 

1 0.002221 0.002055 0.003536 0.003405 0.002452 

1.7 0.002353 0.002799 0.003601 0.002561 0.002967 

-0.3 0.002911 0.003183 0.003014 0.002931 0.002227 

ᶂ5 

 

3.5 0.004415 0.003599 0.003602 0.002140 0.003596 

2.5 0.003077 0.002941 0.002604 0.002100 0.002663 

ᶂ6 1.5 0.003304 0.002422 0.002262 0.003735 0.002177 

ᶂ7 -2 0.004583 0.006338 0.004292 0.004053 0.004003 

ᶂ8 5 0.005394 0.007633 0.009630 0.004031 0.007925 

ᶂ9 

 

3.5 0.002997 0.004680 0.003668 0.003145 0.004239 

3.25 0.003444 0.004051 0.005279 0.003543 0.005348 

Total  0.075118 0.077243 0.068592 0.073939 
 

0.057436 

 

Accuracy: 

        Table 3 presents the computed root values obtained by each 

method for the selected nonlinear equations. The results show 

that all five methods generally converge to the expected root 

values across most test functions. For the benchmark function  

ᶂ8, however, the root values found by NM, HM, and VNM (all 

approximately 3.437471) differ notably from the value obtained 

by both VNHM and NIH (approximately 4.622104), which is 

closer to the true solution reported by Weerakoon and Fernando. 

This comparison highlights that, while all methods perform 

similarly on standard cases, both VNHM and NIH demonstrate 

superior accuracy when solving more challenging equations. 

These findings confirm the robustness of VNHM, particularly for 

difficult problems where traditional methods may fail to reach the 

correct root.

 

Table 3: Accuracy of computed root values for each method. 

Function ᶍ0 
Root value. 

NM HM VNM NIH VNHM 

 

ᶂ1 

 

-0.5 1.36523001341410 1.36523001341410 1.36523001341410 1.36523001341410 1.36523001341410 

1 1.36523001341410 1.36523001341410 1.36523001341410 1.36523001341410 1.36523001341410 

2 1.36523001341410 1.36523001341410 1.36523001341410 1.36523001341410 1.36523001341410 

-0.3 1.36523001341410 1.36523001341410 1.36523001341410 1.36523001341410 1.36523001341410 

ᶂ2 1 1.40449164821534 1.40449164821534 1.40449164821534 1.40449164821534 1.40449164821534 
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 3 1.40449164821534 1.40449164821534 1.40449164821534 1.40449164821534 1.40449164821534 

ᶂ3 

 

2 0.25753028543986 0.25753028543986 0.25753028543986 0.25753028543986 0.25753028543986 

3 0.25753028543986 0.25753028543986 0.25753028543986 0.25753028543986 0.25753028543986 

ᶂ4 

 

1 0.73908513321516 0.73908513321516 0.73908513321516 0.73908513321516 0.73908513321516 

1.7 0.73908513321516 0.73908513321516 0.73908513321516 0.73908513321516 0.73908513321516 

-0.3 0.73908513321516 0.73908513321516 0.73908513321516 0.73908513321516 0.73908513321516 

ᶂ5 

2 

3.5 2 2 2 2 2 

2.5 2 2 2 2 2 

ᶂ6 

 
1.5 2.15443469003188 2.15443469003188 2.15443469003188 2.15443469003188 2.15443469003188 

ᶂ7 

 
-2 -1.20764782713092 -1.20764782713092 -1.20764782713092 -1.20764782713092 -1.20764782713092 

ᶂ8 

 
5 3.43747174342177 3.43747174342177 3.43747174342177 4.62210416355284 4.62210416355284 

ᶂ9 

 

3.5 3 3 3 3 3 

3.25 3 3 3 3 3 

 

Comparisons of Efficiency Index: 

        The term "efficiency index" compares the performance of 

different iterative methods. It depends upon the order of 

convergence and the number of functional evaluations of the 

iterative process. If " ŗ " denotes the order of convergence and " 

Nᶂ " Denote the number of functional evaluations of an iterative 

method, then the efficiency index E.I is defined as: 

E. I = ŗ
1

Nᶂ. 

On this basis, NM(Nazeer et al., 2016) has an efficiency of  2
1

2 ≈

1.4142. HM (Noor et al., 2007) has an order of convergence of 

three, and the number of functional evaluations required for this 

method is three, so its efficiency 3
1

3 ≈ 1.4422. The VNM has an 

efficiency of  3
1

3 ≈ 1.4422. The VNHM needs one evaluation of 

the function's first and second derivatives. Thus, this method has 

three functional evaluations. i.e. 

Nᶂ = 6. 

Also, in the earlier section, it was proven that the order of 

convergence of the VNHM is nine. i.e. 

ŗ =9. 

Thus, the efficiency index of VNHM is:

 

E. I = 9
1

6 ≈ 1.4422. 

 

Table 4: Efficiency indices of the compared iterative methods. 

Method 
Number of function and Derivative 

evaluations 
Efficiency index 

NM, quadratic 2 2
1
2 ≈ 1.41421 

HM 3rd order 3 3
1
3 ≈ 1.44225 

VNM 3rd order 3 3
1
3 ≈ 1.44225 

VNHM 9th order 6 9
1
6 ≈ 1.44225 

Real-World Applications: 

        VNHM’s ability to find roots with very high precision in 

just a few steps makes it highly suitable for real-time control 

problems in robotics, where fast and accurate solutions are 

needed (Martin, 2019). The method is also advantageous in 

tuning nonlinear stiffness curves in structural analysis 

(Engelberger, 2014) and for solving transcendental equations in 

optical design, such as determining resonant frequencies in 

photonic crystals (Reddy, 2003).In each of these cases, the 

combination of rapid convergence and moderate derivative 

evaluation cost enables VNHM to outperform traditional 

Newton- or Halley-based methods.
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Figure 1: Reduction of the relative error graph from iteration 1 to iteration 5. 

  

 

Figure 2: Reduction of relative error graph of iteration 1 to iteration 5. 

 

        Figures 1 and 2 illustrate the convergence rates of the five 

iterative methods for solving nonlinear equations. As shown, the 

VNHM consistently achieves high accuracy in the fewest steps 

across all test problems. In practical terms, this demonstrates that 

an effective combination of iterative techniques can significantly 

reduce computation time and enhance robustness for a wide 

range of equations. 

CONCLUSIONS 

        In this paper, we combined the Halley method (HM) and the 

Variant Newton method (VNM) to construct the Variant 

Newton–Halley Method (VNHM) for solving nonlinear 

equations. This method is used to find solutions to nonlinear 

equations. We have shown that the proposed method has a ninth-

order convergence. By using some test examples, the 

performance and efficiency of the VNHM have been analyzed. 

Tables 1, 2, 3, and 4 show the best performance of the proposed 

iterative algorithms as compared to other well-known existing 

iterative algorithms in terms of accuracy, speed, number of 

iterations, efficiency index, and computational order of 

convergence. Also, relative error reduces the fastest among other 

methods, as shown in Figures 1 and 2. The VNHM is effective 

for real-valued nonlinear equations but is currently not applicable 

to complex roots. Future work will focus on extending the 

method to complex roots. 
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