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ABSTRACT:

Lung cancer is the most common and deadliest type of cancer globally, creating a critical need for diagnostic tools that are
not only accurate but also practical for clinical integration. This study introduces a robust, computationally efficient, and
interpretable deep learning framework using Computed Tomography (CT) images to address limitations in existing models,
such as high computational costs, poor data quality, and a lack of transparency. Our approach utilizes a VGG16 architecture,
streamlined through structured pruning, which reduced the parameter count from 138.3M to 26.6M without compromising
performance. We developed a hybrid pipeline with dual filtering and adaptive CLAHE to enhance image quality, while data
diversity and imbalance were mitigated using hybrid augmentation and SMOTE. The model was trained with a rigorous
strategy, including four-fold cross-validation and dual-phase fine-tuning with a dynamic learning rate, ensuring stable
convergence. On a primary single-source dataset, the model achieved a test accuracy of 0.9910 and a Matthews Correlation
Coefficient (MCC) of 0.9845. To validate real-world applicability, the framework was tested on a large multi-source dataset,
demonstrating strong generalization with a balanced accuracy of 0.9693 and an MCC of 0.9427. Model interpretability was
confirmed using Grad-CAM visualizations to highlight clinically relevant regions. This framework provides a highly
accurate, computationally efficient, and generalizable solution with significant potential for clinical deployment as a reliable
diagnostic aid.

KEYWORDS: Lung cancer; Deep Learning (DL); Computed Tomography (CT); Transfer learning; Hybrid Preprocessing;
VGG16, Synthetic Minority Oversampling Technique (SMOTE); Grad-CAM.

1. INTRODUCTION high-resolution, cross-sectional images of the lungs using X-rays.
For this reason, the provided images offer better visibility of lung
nodules compared to standard chest X-rays (Murad et al., 2023).
Furthermore, a special type of CT, known as Low-Dose
Computed Tomography (LDCT), wuses significantly less
radiation. Despite the lower dose, it still provides accurate
detection. Studies have shown that LDCT can reduce lung cancer
mortality by around 20% Therefore, it was recommended that

LDCT be used as a standard screening tool for high-risk

Background:

Over the past decades, lung cancer has increased
dramatically and has remained the most prevalent and deadly
malignancy worldwide (Bray et al., 2024). According to the
International Agency for Research on Cancer, in 2022, lung
cancer accounted for 12.4% of all new cancer cases (2.5 million)
and 18.7% of cancer deaths (1.8 million). Projections estimate a

77% increase in these statistics by 2050 (Leiter ez al., 2023). The
diagnosis begins when pulmonary nodules are detected on
medical these nodules indicate abnormal and
uncontrolled growth of lung cells and are classified as either
benign (slow-growing, non-metastatic) or malignant (rapidly
growing and metastatic). This kind of cancer is often detected at
advanced stages when treatment options are limited and survival
chances are lower (WHO, 2023). In this regard, it would seem
that improving early detection methods could reduce the high
death rate due to lung cancer.

It is worth noting that several methods exist for detecting
lung nodules in the chest. Among these, Computed Tomography
(CT) is considered the most effective because it usually produces

imaging;
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individuals (National Lung Screening Trial Research Team,
2011).

However, manually interpreting CT scans remains time-
consuming and may lead to inconsistent diagnoses between
experts. Consequently, these limitations may cause treatment
delays and negatively impact patient outcomes. Therefore, there
is a critical need for automated diagnostic systems to support
clinical decision-making. Recent advances in deep learning (DL),
particularly Convolutional Neural Networks (CNNs), have
shown significant promise in medical imaging because they can
automatically learn discriminative features directly from raw
images. Studies have demonstrated that CNNs can detect and
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classify lung nodules with accuracy comparable to that of
experienced radiologists (Ibrahim & Mahmood, 2023).

Among the many available CNN architectures, VGG16 has
become widely adopted for its effectiveness in medical imaging.
Its simple and well-organized design includes small 3x3 filters
and stacked convolutional layers, allowing it to extract a rich
hierarchy of features, from basic edges to complex
patterns. Furthermore, its use of ReLU activation adds non-
linearity,  enhancing the model’s overall learning
capacity. Ultimately, these extracted features are passed to fully
connected layers for classification, making VGG16 a powerful
tool for medical analysis (Ardila et al., 2019).

Problem Statement:

Although deep learning (DL) has shown growing success in
lung cancer detection and classification, several limitations
hinder its clinical deployment. A primary challenge starts from
medical  datasets, which are often small and
imbalanced. Furthermore, each dataset collection contains
different variations and noise acquired from different CT
scanners, which reduces model reliability and generalization.
Another key issueis that standard DL architectures are
computationally expensive, making them unsuitable for
resource-constrained settings. While lightweight models offer an
efficient alternative, they cannot frequently capture the fine-
grained patterns required in medical imaging.

Furthermore, the use of weak validation strategies, such as
simple train-test splits and evaluation on single-source datasets,
often leads to poor generalization on different source data.
Additionally, many studies rely overly on accuracy while
neglecting more robust metrics, such as Fl-score, Matthews
Correlation Coefficient (MCC), Cohen’s Kappa, and Confidence
Intervals (CI), that better reflect true model performance.
Moreover, interpretability remains a significant concern. Most
DL models function as “black boxes,” which can limit clinical
trust and acceptance. All these compound challenges underscore
the need for DL frameworks that are efficient, interpretable, and
rigorously validated for real-world clinical use.

Study Objectives:

This study aims to develop a robust, efficient, and
interpretable VGG16 model for multi-class lung cancer
classification that generalizes across diverse CT data for reliable
clinical use.

Specific Objectives:

1. To mitigate challenges related to data quality and
imbalance by implementing an advanced preprocessing pipeline
and class-balancing techniques. This will enhance the model's
reliability and generalization across diverse and noisy datasets.
2. To reduce the computational cost of the VGG16
architecture through strategic parameter pruning and fine-tuning.
Consequently, the resulting model will be efficient enough for
deployment in resource-constrained clinical environments.

3. To improve model transparency and build clinical trust
by integrating explainability (XAI) methods. These tools will
visualize the model’s decision-making process, moving beyond
a 'black box' approach.
4. To conduct a rigorous and clinically relevant
evaluation of the model. Therefore, performance will be assessed
using K-Fold cross-validation with comprehensive metrics and

validated on multi-source data to ensure its real-world

effectiveness.

Study Contributions:

This study makes several key contributions to automated
lung cancer detection by addressing common limitations in data
preparation, model efficiency, and validation. Our main
contributions are:

1. A Quantitatively Validated Preprocessing Pipeline: We
developed a pipeline that combines hybrid filtering and adaptive
contrast enhancement. Its effectiveness was confirmed through
comparative analysis and quantitative metrics (PSNR, SSIM) to
ensure it improves image quality without introducing artifacts.
2. A Hybrid Strategy for Data Diversity and
Balancing: We implemented a strategy combining hybrid
augmentation with SMOTE oversampling. This creates a more
diverse and balanced dataset, which directly improves the
model's ability to generalize.

3. A Lightweight and Efficient Deep Learning
Architecture: We developed a highly efficient model by pruning
the pretrained VGG16 architecture and applying a dual-phase
fine-tuning strategy. This reduced the model's parameters and
memory size by more than 80% without sacrificing accuracy,
making it practical for clinical deployment.

4. A Robust Multi-Layered Validation: We employed a
two-tiered strategy combining K-Fold Cross-Validation and
external validation on a large multi-source dataset. This
comprehensive approach, using metrics like F1-score, MCC, and
95% CI, demonstrates the model's robustness and real-world
generalizability.

5. Enhanced Clinical Interpretability: We
Grad-CAM to provide visual explanations of the model’s
predictions. These heatmaps enhance transparency, build clinical
trust, and support expert review.

integrated

2. LITERATURE REVIEW

To design a clinically robust and generalizable lung cancer
classification system, we examined recent deep learning research
using CT imaging. This section categorizes key studies by
methodology and outlines common limitations—particularly in
preprocessing, class balancing, validation, and explainability—
that our proposed framework aims to overcome.

Summary of Recent Studies in Lung Cancer Classification:

The Automated lung cancer diagnosis has progressed from
traditional machine learning to advanced deep learning pipelines.
Current literature highlights diverse architectural approaches,
from pretrained CNNs to custom and hybrid models.

Preprocessing and Data Handling:

Effective preprocessing is a critical first step for any
diagnostic model. The literature shows a wide range of
approaches. Many studies have employed foundational
techniques such as image resizing, normalization, and basic
filtering (Anand et al., 2022; Tandon et al., 2022). More
advanced studies have incorporated specific denoising filters like
Gaussian or median filters (Gupta et al., 2023; Ravindra et al.,
2024) and contrast enhancement using methods like CLAHE to
improve the visibility of nodules (Gupta et al., 2023; Kamath &
Singh, 2024). To address the everyday challenges of small dataset
sizes and class imbalance, data augmentation is a near-universal
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practice (Anand et al., 2022; Jassim et al., 2024; Tandon et al.,
2022). Some studies have further utilized oversampling
techniques like the Synthetic Minority Oversampling Technique
(SMOTE) to balance class distributions (Kumaran et al., 2024).

Architectural Models Commonly Applied in Lung Cancer
Diagnosis:

The choice of model architecture is central to performance.
We can categorize the approaches in the literature into three main
groups:
1. Transfer Learning with Standard Architectures: The
most prevalent approach involves leveraging pre-trained CNNGs.
Models such as VGG16 (Anand et al., 2022; Benamara et al.,
2024; Ghosh et al., 2023; Klangbunrueang et al., 2025),
MobileNetV2 (Alheeti et al., 2024; Ghosh et al., 2023), ResNet
(Al-Shouka & Alheeti, 2023; Sangeetha et al., 2023), and
InceptionV3 (Anand ef al., 2022) are commonly fine-tuned for
lung cancer classification, often achieving high accuracy scores.
These studies have indicated the power of transfer learning in
medical imaging.
2. Complex and Ensemble Models: To further boost
accuracy, some researchers have developed more complex
systems. This includes creating novel hybrid architectures, such
as VCNet, which combines VGG16 with a Capsule Network
(Tandon et al., 2022), or IRRCNN, which integrates Inception
and recurrent layers (Anusha & Reddy, 2023). Another popular
strategy is ensembling, where predictions from multiple models
(e.g., ResNet, EfficientNet) are combined to produce a more
robust final decision (Jassim et al., 2024; Kumaran et al., 2024).
These approaches often report state-of-the-art accuracies,
frequently exceeding 99% on their respective test sets.
3. Handcrafted CNNs: A smaller subset of studies builds
custom, handcrafted CNNs from scratch (Anand et al., 2022;
Gupta et al., 2023). While sometimes effective, these methods
are slightly outperformed by transfer learning and can be less
scalable.

Validation Strategies and Generalization:

A model's true clinical value is determined by its ability to
generalize to new, unseen data. However, the validation strategies
reported in the literature are often limited. The vast majority of
studies evaluate their models using a simple train-test split on
a single, homogenous dataset, such as LIDC-IDRI or IQ-
OTH/NCCD (Kumaran et al., 2024; Tandon et al., 2022; Ghosh
et al., 2023; Gupta et al., 2023; Naseer et al., 2023).

Clinical Interpretability:

For a diagnostic Al tool to be trusted by clinicians, it must be
interpretable. Explainable Al (XAI) techniques like Grad-CAM,
which generate heatmaps to show where the model is focusing,
are crucial for building this trust. However, XAl is still
underutilized in the field, with only a few recent studies
incorporating it (Kumaran et al., 2024; Klangbunrueang et al.,
2025).

Limitations in Existing Literature and Our Proposed
Solutions:
Although deep
classification, a review of the literature reveals several persistent
limitations that hinder the development of clinically robust

learning has advanced lung cancer

models. The present study directly addresses these challenges
related to data preparation, model complexity, and validation.

First, many studies employ inadequate preprocessing
methods without quantitatively validating their impact. For
instance, some rely on basic filters alone (Ravindra et al., 2024,
Sangeetha et al., 2023), while others apply standard contrast
enhancement techniques (Alheeti et al., 2024; Gugulothu &
Balaji, 2023). Similarly, data augmentation is frequently
simplistic (Anand et al., 2022; Tandon et al., 2022), and
oversampling methods like SMOTE are often used in isolation,
overlooking the need for greater data diversity (Kumaran et al.,
2024). In contrast, our framework implements an advanced
pipeline combining a hybrid filter with dynamic contrast
enhancement to improve image quality. Furthermore, we pair
advanced augmentation—designed to simulate real-world
variations from different CT scanners and imaging protocols—
with SMOTE to ensure the model trains on a diverse and
balanced dataset.

Additionally, other research often relies on overly complex

architectures to achieve high accuracy. These ensemble or deep
models typically have high computational costs and memory
requirements (Anusha & Reddy, 2023; Jassim et al., 2024;
Tandon et al., 2022). Consequently, their use is impractical in
many resource-constrained clinical settings.
To address this, our work streamlines the VGG16 architecture
through structured pruning. This method reduces the model's
parameters by approximately 80%, creating a lightweight yet
powerful model suitable for real-world deployment.

Furthermore, a critical weakness in the literature is the
reliance on limited validation strategies. Most studies evaluate
their models on a single data source with a basic train-test split
(Alheeti et al., 2024; Al-Shouka & Alheeti, 2023; Balaji &
Gugulothu, 2023; Jassim et al., 2024; Kumaran et al., 2024;
Klangbunrueang et al., 2025; Naseer et al., 2023;); consequently,
these models often fail to prove they can generalize to different
clinical environments. Performance is also often measured with
narrow metrics like accuracy (Tandon et al., 2022; Sangeetha et
al., 2023), which can be misleading.

Our study directly confronts these issues with a multi-
layered validation strategy. First, we apply K-Fold Cross-
Validation on the single-source dataset. Second, and most
importantly, we retrained and validated our entire framework on
a large, multi-source dataset—a step notably absent in much of
the literature—to confirm its real-world generalization. Both
validation approaches are evaluated with comprehensive metrics,
including F1-score, MCC, 95% CI, Cohen’s Kappa, and error-
based metrics.

Moreover, explainability is underutilized, with only rare
studies implementing it (Kumaran et al., 2024; Klangbunrueang
et al., 2025). We address this gap by integrating Grad-CAM,
which provides transparent visualizations to help build clinical
trust.

3: METHODS AND MATERIALS

This section outlines the experimental methodology
developed for our automated lung cancer detection framework.
Our end-to-end pipeline integrates a quantitatively validated
preprocessing stage, a hybrid data balancing strategy, a pruned
and fine-tuned VGG16 model, a multi-layered validation
protocol, and Grad-CAM for interpretability. This approach was
systematically designed to overcome common limitations in the
literature, including poor data quality, model complexity, and
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limited generalization. The overall workflow is presented in

Figure 1, and each step is detailed in the sections below.

®
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Used Grad-CAM . -
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Figure 1: Implementation Steps of Proposed Methodology

Dataset Description:

The proposed model was developed and validated using the
publicly available 1Q-OTH/NCCD dataset (Al-Yasriy et al.,
2020). This dataset, professionally annotated by expert
radiologists and oncologists, comprises 1,097 grayscale CT
images, each with a resolution of 512x512 pixels. The images are

categorized into three clinically relevant classes: Benign,
Malignant, and Normal. As stated in Table 1, the dataset exhibits
two primary challenges: a modest overall sample size and a
significant class imbalance, with malignant cases constituting
over half of the data. These characteristics necessitate a rigorous
data partitioning and validation strategy to ensure a robust and
unbiased model evaluation.

Table 1: Class Distribution of the IQ-OTH/NCCD Dataset

Class Type Description Number of Samples Percentage (%)
Benign Non-cancerous lung nodules 120 10.94%
Malignant Cancerous (lung cancer) nodules 561 51.14%
Normal Healthy lung images with no nodules 416 37.91%
Total — 1,097 100%

Preprocessing Pipeline and Comparative Evaluation:

Effective preprocessing is fundamental to enhancing the
quality and diagnostic utility of lung CT images for deep learning
models. This study, therefore, systematically investigates various
preprocessing techniques to identify an optimal pipeline for lung
nodule classification. The goal is to address key artifacts in
medical images, specifically noise, contrast variability, and
spatial inconsistencies, by evaluating the performance of

Quantitative evaluation was performed using two widely
accepted metrics, the Peak Signal-to-Noise Ratio (PSNR) and the
Structural Similarity Index Measure (SSIM). PSNR measures
pixel-level fidelity, while SSIM provides a more perceptually
relevant assessment by comparing luminance, contrast, and
structural information (Al Najjar, 2024; Rodrigues et al., 2024).
Higher values for both metrics signify superior image quality and
structural preservation. A detailed summary of the preprocessing

multiple denoising and contrast enhancement methods. configurations and their parameters is provided in Table 2.
Table 2: Summary of Preprocessing Steps and Parameters Setup
# Step Technique Parameters Purpose
Hybrid Median Filter kernel 3x3 Removes salt-and-pepper noise while
Filteri . ing critical edge and textur
1  Noise Reduction ! e'rlng - Guided Filter (radius=5, smoothness presejrvmg critea e' ge z'm exure
(Median + controller £=0.1) details, outperforming single-filter
Guided) ’ methods.
- Tile Grid: 8x8
Contrast Dynamic Basel CeliprlLimit 15 Enhances local contrast for better feature
y - L e . . .
Enhancement CLAHE _ Scale Factor- 0.3 visibility while preventing noise over-
T amplification in high-contrast regions.
- Entropy Thresholds: ELow =5, Enigh=06
3 Standardization Resizing & - Method: Lanczos Interpolation Ensures uniform input dimensions and
Normalization - Target Size: 224x224, Range: [0, 1] pixel value range for stable training.
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Hybrid Filtering for Denoising: Comparative Evaluation:

To suppress imaging noise while preserving anatomical
structures, we evaluated several denoising algorithms to identify

the most suitable technique. Table 3 summarizes the quantitative
results across methods.

Table 3: Comparative Analysis of Denoising Techniques (Higher values indicate better quality)

Denoising Technique PSNR (dB) SSIM Observations
Bilateral Filtering 30.75 0.7754 Over-smoothed; loss of texture
Gaussian Filtering 35.79 0.8729 Smooth output; edge blurring observed
Median Filtering (3%3) 39.82 0.8845 Strong denoising; moderate structure preservation
Median Filtering (5x5) 36.28 0.8191 Excessive smoothing; reduced fine detail retention
Guided Filtering 36.54 0.8992 Highest SSIM; preserves edges well, less effective on noise.
Non-Local Means (NL-Means) 36.86 0.8595 Good PSNR, slight blurring; time-consuming
NL-Means + Guided Filtering 35.73 0.8298 Redundant smoothing; degraded structure clarity
NL-Means + Bilateral Filtering 29.53 0.6934 Suboptimal; lowest PSNR and SSIM
Proposed: Median (3x3) + Guided 39.88 0.8845 Best PSNR, high SSIM; balanced edge/detail preservation

As shown in Table 3, the Hybrid Filtering method (combining
Median 3x3 and Guided Filter) was selected as the optimal
denoising strategy. It outperformed standalone techniques by
achieving the highest PSNR (39.88 dB) and a strong SSIM
(0.8845), effectively balancing noise reduction with structural
preservation. This was achieved by effectively combining a
Median filter's spatial smoothing with a Guided Filter's edge-
aware properties. While Guided Filtering alone yielded a higher
SSIM (0.8992), its lower PSNR suggested undesirable over-
smoothing. Therefore, the hybrid configuration was implemented
as the foundation for our preprocessing pipeline.

Dynamic CLAHE for Contrast Enhancement:

CLpase + (SF X (ELoy — Entropy))
Clpgse — (SF X (Entropy— EHigh))

CLdynamic =
CLbase

Where Entropy represents image histogram entropy. CLj4se
(1.5) is the default base clip limit; SF' (default: 0.3) is the scaling
factor, while ELow (5) and Enign (6) are the entropy thresholds.
The adjustment mechanism is controlled by these entropy
thresholds. For images with entropy exceeding the upper
threshold of 6, the default base clip limit is applied. This is a
thoughtful design choice, as the entropy values in our dataset
ranged from 4.98 to 7.12 (mean = 6.20). By setting the threshold
slightly below the average, we ensure that the majority of images
are treated cautiously, minimizing the risk of noise amplification
and structural artifacts in these already detailed images. In
contrast, for the rare images with entropy below the lower

Following denoising, local contrast enhancement was
performed using Contrast-Limited Adaptive Histogram
Equalization (CLAHE) to improve the visibility of fine structures
in lung CT images. Unlike standard CLAHE, which uses a fixed
clip limit and may result in over-amplification of noise in
homogeneous or high-contrast regions, we implemented a
dynamic clip limit adjustment based on image entropy. This
strategy is designed to prevent over-enhancement in high-
contrast images while selectively boosting contrast where it is
most needed. The adaptive clip limit is computed using the
following Equation (1):

if E < Ejpy
if Egign > E v oe oo oe - (1)

otherwise
threshold of 5, the clip limit is increased using a scaling factor
(SF) to significantly boost contrast. This approach of using
entropy to guide the clip limit aligns with the recommendations
of Chang et al. (2018), who demonstrated its benefits for medical
image enhancement.

The effectiveness of our proposed dynamic CLAHE was
evaluated against the standard approach using PSNR and SSIM
metrics. As reported in Table 4, the adaptive method achieved
higher PSNR and markedly superior SSIM than the fixed-limit
baseline, confirming better structural preservation and perceptual
quality.

Table 4: Performance Comparison of Contrast Enhancement Techniques

Contrast Enhancement Technique

Dynamic CLAHE (Adaptive Clip Limit, 8x8 Tile Grid)
Standard CLAHE (Fixed Clip Limit: 1.5, 8x8 Tile Grid)

Average PSNR (dB) Average SSIM
31.08 0.8584
29.12 0.7288

The effect of the proposed preprocessing pipeline on CT
lung images, along with corresponding histogram visualizations,
is illustrated in Figure 2. As observed, the hybrid filtering stage
effectively reduces background noise while preserving critical
anatomical structures. Following this, the application of dynamic

CLAHE significantly enhances local contrast, improving the
visibility of subtle pathological features. The accompanying
histograms reveal a notable redistribution and widening of pixel
intensity values, confirming enhanced feature differentiation and
improved perceptual quality.
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Figure 2: Effect of Preprocessing on CT Lung Images with Histogram Visualization
The figure illustrates representative CT scan samples at different stages of preprocessing. From left to right: (1) Original grayscale
image, (2) Denoised output using Hybrid Filtering (Median + Guided), and (3) Contrast-enhanced image using dynamic CLAHE.
Each image is accompanied by its corresponding histogram to highlight intensity distribution changes.

Hybrid Data Augmentation and Balancing Strategy:

To address the limited dataset size and pronounced class
imbalance, a comprehensive, multi-stage data augmentation and
balancing strategy was employed within each training fold of the
cross-validation. This hybrid approach was designed to enhance
data diversity and mitigate class underrepresentation, thereby
improving model generalization, as detailed below.

Naug = Noriginal X Max (min_aug,

Where Ng, 4 is the total number of augmented images for the
class, Nyrigina: is the count of original images, and min_aug It
is the minimum augmentation multiplier. The threshold of 1,000
images per class was established as a robust baseline for
balancing to ensure that even the most underrepresented classes
(Benign) had a sufficiently large and diverse set of samples for
the model to learn meaningful features. This value was
determined through preliminary experiments, which indicated
that smaller thresholds led to underfitting on the minority classes,
while significantly larger thresholds offered diminishing returns
on performance at a higher computational cost. This approach
provided a balanced trade-off between data diversity and training
efficiency. Furthermore, multiprocessing was used to parallelize
transformations and improve efficiency.

Dynamic (Real-time) Augmentation:

During the training process, on-the-fly transformations were
applied to each batch of data using the Keras Image Data
Generator. These included random rotations (£10°), brightness
variations (scale 0.7-1.3), zooming, width/height shifts (10%),

Static (Offline) Augmentation:

Before training started, the images in the training set
underwent offline augmentation. This involved applying a set of
transformations, including affine transformations, elastic
deformations, and cut-out augmentation, to the original images.
The augmentation rate class-specific to target
underrepresented classes more aggressively. The number of

was

augmented images for each class was determined by Equation 2:

1000 ) @
Noregimar) 7T

and shear distortions. This dynamic approach ensures the model
encounters slightly different versions of the images in each
epoch, which is highly effective at reducing overfitting and
improving model robustness without requiring additional
storage.

Feature-Space Synthetic Oversampling:

To further address class imbalance, the Synthetic Minority
Oversampling Technique (SMOTE) was applied in the feature
space rather than on raw pixel data. During training, CT images
were passed through the convolutional base of the VGG16 model
to extract high-level embeddings, and SMOTE was used to
generate synthetic feature vectors for minority classes by
interpolating within this learned feature space. This approach
preserves semantic consistency and avoids the visual artifacts
often introduced by pixel-level oversampling, thereby enhancing
minority class representation while maintaining clinical
plausibility. Figure 3 shows the effect of the hybrid augmentation
and balancing pipeline on the training set’s class distribution.
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Figure 3: Class Distribution in the Training Set After Multi-Stage Balancing
The original imbalance (72 benign, 246 normal, 336 malignant) was mitigated through class-specific augmentation, followed by
SMOTE, resulting in 1,344 samples per class. This improved diversity and generalization, particularly for the minority class.

Dynamic Class Weighting:

To mitigate residual class imbalance during training,
dynamic class weighting was employed. This approach was
especially important within the K-fold cross-validation
framework, where stratified sampling maintains global class
proportions but may still produce imbalances within individual
batches. By recalculating class weights dynamically for each
batch based on its class distribution, the model gives more
importance to mistakes made on minority class samples. This
real-time  adjustment ensures consistent focus on
underrepresented classes, enhancing feature learning and
improving overall model fairness. Combined with augmentation
and feature-space oversampling, this strategy forms a robust and
generalizable learning pipeline.

Validation Strategy:

To ensure a comprehensive and robust evaluation, we
employed a multi-layered validation strategy. This approach
includes both a rigorous internal validation on our primary
dataset and a crucial external validation on a large, multi-source
dataset to confirm real-world generalization.

Data Partitioning and Internal Validation Strategy on the
Primary Dataset:

Our internal validation strategy was designed to ensure
robust model training, stable hyperparameter tuning, and an
unbiased final evaluation. This was achieved through a multi-
stage process involving an initial data split, followed by K-fold
cross-validation on the training portion.

1. Initial Data Partitioning

First, the entire IQ-OTH/NCCD dataset was partitioned using
stratified sampling into three distinct, non-overlapping subsets:
Training Set (60%), reserved exclusively for training the model
using a cross-validation protocol. Fixed Validation Set (20%), a
hold-out set used as a consistent benchmark across all training
iterations for early stopping and model checkpointing. Hold-Out
Test Set (20%), a completely separate set used only once for the
final, unbiased performance evaluation of the best model.

The detailed distribution of samples across these splits is
presented in Table 5.

Table 5: Stratified Train-Validation-Test Split of the [Q-OTH/NCCD Dataset

Set Benign Malignant Normal Total
Training Set (for CV) 72 336 249 657
Fixed Validation Set 24 112 83 219

Hold-Out Test Set 24 113 84 221

K-Fold Cross-Validation Protocol:

To train the model robustly, we applied a 4-fold cross-
validation (CV) protocol exclusively to the Training Set (the 60%
portion). In each of the four training iterations, three folds were
used for model training, while the remaining fold served as an
internal validation set to provide immediate feedback on
generalization within the training data.

Model Selection and Final Evaluation:

Crucially, during each training iteration, model performance
was monitored on the Fixed Validation Set (the 20% hold-out).
This set provided a stable, consistent benchmark across all four
CV runs. Decisions for early stopping and saving the best model

checkpoint were based exclusively on the performance on this
Fixed Validation Set, ensuring that the model selection process
was stable and not influenced by the variability of the individual
validation folds.

Finally, the single best-performing model identified through
this entire process was evaluated once on the Hold-Out Test
Set to report its final, unbiased performance.

Generalization Assessment on Multi-Source Dataset:

To assess the model's real-world generalization and
robustness beyond a single data source, a final external validation
was performed. This validation utilized a large, composite multi-
source dataset comprising over 29,000 images compiled from
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five public sources, including our primary IQ-OTH/NCCD
dataset.

For this assessment, the entire proposed framework—from the
preprocessing pipeline to the model training and fine-tuning
strategy—was reapplied to this new, diverse dataset. The model,
after training, was then evaluated using a standard train-test split
to simulate a realistic deployment scenario. This critical step
confirms that the model's high performance is not limited to the
characteristics of a single dataset and that it can generalize
effectively to unseen data from different clinical environments.
The specific composition of this dataset and the detailed
outcomes of this evaluation are presented in Section 4.4.

Proposed Model Architecture and Efficiency Improvement:

The core of our framework is the pretrained VGG16 model,
which consists of 13 convolutional layers grouped into 5 blocks
(indexed from blockl convl through block5 conv3), followed
by three large fully connected (FC) layers. While this structure
provides excellent feature extraction, its original design is too
large and computationally intensive for practical clinical use.
Therefore, we implemented a structured, layer-level pruning
strategy. Specifically, we removed the original, oversized FC
layers in their entirety, including all associated weights and
neurons. This was necessary because these layers are a primary
source of computational cost and are highly prone to overfitting,
a problem that is worsened when working with modest-sized
medical datasets. Figure 4 illustrates architectural differences
between the original and modified model.

Original VGG16 Proposed Lightweight VGG16

ConvBlock?2 ConvBlock2

ConvBlock3 ConvBlock 3

ConvBlock4 ConvBlock4

ConvBlock5 ConvBlock5

BN

Flatten Golobal Average Pooling

Reduced
Complexity

FC (4096 Unit+ ReLU) ) FC (128 Neuron BN/ Dropout)
¥

FC (4096 Unit+ ReLU) FC (64 Neuron+BN/ Dropout)
¥

FC (3 Unit + Softmax)

FC (1000 Unit +Softmax)

-

Figure 4: Structural Comparison Between the Original VGG16
and the Proposed Lightweight VGG16 Model

Therefore, the resulting lightweight architecture
significantly reduces the model’s size by approximately 80%,
making it over five times smaller than the original VGG16. This
promotes efficient deployment of our model while
simultaneously improving predictive accuracy by enhancing
generalization. Figure 5 presents a comparison of parameters and

model size between the original and modified versions.

Comparison of Model Complexity: Original vs. Proposed VGG16

B Original VGG16 —_—
500 == Proposed VGGL6

400

Figure 5:Comparison of Parameter Count and Model Size
between the Original VGG16 and the Modified Version.

Training Strategy:

Transfer Learning and Fine-Tuning:

To effectively utilize transfer learning, we adopted a multi-
stage training strategy based on a modified pretrained VGG16
architecture. The model was designed for multi-class
classification using the Categorical Cross-Entropy loss function.
The convolutional layers served as feature extractors, capturing
essential patterns from lung CT images.

In the initial training phase, the model was trained for 30
epochs using the Adam optimizer, while the base VGG16 layers
were frozen and only the newly added custom classification head
was updated. This step preserved the general-purpose features
learned from ImageNet and enabled the model to start learning
lung-specific patterns without modifying the core feature
extractors. Following this, we implemented a two-phase fine-
tuning strategy to gradually adapt the model to the unique
characteristics of lung CT images while retaining the general
representations learned during pre-training:

e  First Fine-Tuning Phase:

The model was trained for 20 additional epochs using the
Stochastic Gradient Descent (SGD) optimizer with the last 10
convolutional layers unfrozen. These included layers from
block3 convl to block5 conv3, which are responsible for
extracting mid- and high-level semantic features. Unfreezing
these layers allowed the model to fine-tune the deeper
representations related to lung tissue and lesion structures.

e  Second Fine-Tuning Phase:

To further refine feature learning, we unfroze five additional
earlier layers—including block2 convl, block2 conv2, and
earlier layers in block3. The model was retrained for another 10
epochs using the same optimizer with a lower initial learning rate.
This allowed more accurate weight updates in both mid- and
high-level layers, improving convergence and reducing
overfitting.

Eventually, this selective fine-tuning strategy, where layers
were gradually unfrozen from deep to shallow, enabled effective
adaptation of pretrained features to the medical imaging domain.
It also ensured stable training dynamics and strong generalization
performance on the multi-source lung CT dataset.

Adaptive Learning Rate Scheduling:

To ensure stable and efficient model convergence, we
implemented a custom adaptive learning rate scheduling strategy.
This approach is designed to mitigate the risks of divergence
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during early training and to refine the model's parameters as it
approaches an optimal solution. The schedule consists of two
distinct phases: an initial warm-up phase followed by a stepwise

decay phase. This two-phase process is detailed in Algorithm 1
and formulated in Equation 14.

Algorithm 1: Adaptive Learning Rate Schedule

Input: Current epoch E, initial learning rate Ir_initial, minimum learning rate Ir_min, number of warm-up epochs E_warmup,

decay rate R_decay, epoch drop period E_drop.
Output: Calculated learning rate Ir for the current epoch.

1if E <E_warmup then

tIr « Ir_initial x (E+ 1)/ E_warmup

else

: // Decay Phase: Apply stepwise exponential decay.

: epochs_since_warmup «— E - E_warmup

: decay_steps «— floor(epochs_since warmup / E_drop)
:Ir < Ir_initial x (R_decay " decay_steps)

:end if

© % NN U AW~

: // Warm-up Phase: Linearly increase LR from a low value to Ir_initial.

10: // Clamping: Ensure the learning rate does not fall below the minimum threshold.

11: Ir <+ max(lr, Ir_min)
12: return Ir

The mathematical formulation for the learning rate, Ir(E), at a given epoch E is defined as:

I E+1
Tinitial X

Ewarmup

lr (E) = lE— Ewarmup]
E
max lrinitial X Rdecay drop ’ lrmin

if E< Ewarmup

(14)
ifE =4 Ewarmup

The description and values of parameters used in this schedule are defined in Table 6.

Table 6: Learning Rate Scheduler Parameters

Parameter Symbol Value Description
Initial Learning Rate initiar 0.001 The target learning rate is after the warm-up phase.
Minimum Learning Rate Irmin le-6  The lower value for the learning rate is to prevent training from stalling.
Warm-up Epochs Ewarmup 5 The number of epochs for the linear warm-up phase.
Decay Rate Raecay 0.75 The multiplicative factor for each decay step.
Epoch Drop Eqrop 5 The number of epochs between each learning rate decay.

This adaptive During the warm-up phase (the first 5 epochs), the
learning rate increases linearly. This gradual ramp-up allows the

Reached iniial Ir  First decay step

Adggve Learning Rate Schedule

107 Wiarm-up Phase
Stepwise Decay Phase

[ 5 10 15 20 2 30
Fpoch

Figure 6: Learning Rate Path During Training

model to stabilize by taking smaller, more cautious steps when
the model's weights are still randomly initialized and gradients
can be large and erratic. Following the warm-up, the schedule
transitions to the stepwise decay phase. The learning rate is
reduced by a factor of 0.75 every 5 epochs. This allows the model
to make larger updates early in the decay phase and progressively
smaller, more refined updates as it converges, helping to prevent
overshooting the minima in the loss landscape. Finally, the
learning rate is clamped at a minimum value (Iryy;,) to ensure
that training does not halt prematurely. Figure 6 provides a
visualization of this adaptive schedule, illustrating the linear
increase during the warm-up period followed by the discrete,
stepwise decay throughout the remainder of the training process.

Visualization of the adaptive LR schedule. The process begins with a 5-epoch linear warm-up to a rate of 0.001, followed by a
stepwise exponential decay. The discrete drops in the learning rate help refine the model's convergence as training progresses.

Early Stopping and Model Checkpointing:

Early stopping was employed by monitoring the loss on a
fixed clean validation set to prevent overfitting. The model
automatically reverted to the weights corresponding to the epoch
with the lowest validation loss. During training, checkpoints
were saved at the end of each epoch, but only the weights that
achieved the minimum loss on the validation set were retained
for final evaluation.

Performance Evaluation:

Evaluation Metrics:

To assess model performance robustly, a diverse set of
metrics was used. Precision minimized false positives, while
recall ensured detection of actual cancer cases. The F1-score
balanced these metrics; it is useful in the presence of class
imbalance. AUC-ROC evaluated all class separability across
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thresholds. Cohen’s Kappa and Quadratic Weighted Kappa
(QWK) measured agreement beyond chance, and they are more
reliable than accuracy alone, accounting for the clinical severity
of misclassifications. MCC offered a balanced summary of all
confusion matrix elements, and balanced accuracy ensured fair
class-wise performance. While Error prediction metrics (MSE,

RMSE, and MAE) are employed to provide a quantified
prediction of deviations, the 3%3 confusion matrix visualizes per-
class accuracy and guided refinement. ALL these metrics
together supported a comprehensive, reliable, and interpretable
evaluation of our proposed model. A full summary of the
mathematical definitions of these metrics is presented in Table 7.

Table 7: Comprehensive Evaluation Metrics for Classification Performance

Metric Mathematical Formulation of Metrics Equation No.
Accuracy Acc. = TP+TN 3)
""TP+TN+FP+FN
Precision TP “)
Prec=7p<rp
Recall TP (5)
Rec. = Tp+Fn
- Precision X Recall
F1-score Fl1=2x st (6)
Precision + Recall
Cohen’s Kappa (k) = Po ~ Pe @)
1- Pe
Quadratic Weighted Kappa (QWK) OWK =1 Yw;;0;; )
Xwij Eij
Matthews Correlation Coefficient (MCC) MCC 9

TP XTN —FP XFN

JTP +FP)(TP + FN)(TN + FP)(TN + FN)

Balanced Accuracy

Mean Squared Error (MSE)

Root Mean Squared Error (RMSE)
Mean Absolute Error (MAE)

Balanced Acc.= —

n
1
MAE:—E =7
n_llyl sA))
=

1< TP + TN ) (10)
2\TP+FN ' TN + FP
1< - (11)
MSE == i =)
n i=1
RMSE = VMSE (12)
(13)

Abbreviations:

TP: True Positive, TN: True Negative, FP: False Positive,
FN: False Negative, yi: Actual value, y"i: Predicted value, n:
Number of samples, w;: Weight matrix, Oj: Observed
agreement matrix, Ej;: Expected agreement matrix, po: Observed
agreement, p.. Expected agreement.

Statistical Analysis:

The model's performance was assessed using a multi-
layered evaluation strategy to ensure robustness and clinical
relevance. The initial phase involved a rigorous internal
validation on the primary single-source dataset, conducted via 4-
fold cross-validation. Subsequently, a final generalization
assessment was performed by retraining and validating the entire
pipeline on a large, independent
dataset. Throughout both stages, performance was quantified
using a comprehensive suite of metrics, including F1-score,
Matthews Correlation Coefficient (MCC), AUC, and 95%
Confidence Intervals (CI).

multi-source

Model Interpretability with Grad-CAM:

This study applied a Grad-CAM technique in order to
improve the model's interpretability and ensure the model
focuses on clinically relevant regions within the lungs. Grad-
CAM relies on guided backpropagation to make the most

important parts of the image visible and highlight them with heat
maps (Chattopadhay et al., 2018). This visualization technique
shows which parts of the image play a key role in the results, with
red/yellow areas usually containing nodules or abnormal tissue
in both malignant and benign cases, and blue regions often being
background or normal lung tissue. It provides intuitive insights
into the model's decision-making process and could potentially
enhance its clinical reliability.

EXPERIMENTAL RESULTS AND EVALUATION

Experimental Setup:

To ensure efficient training and evaluation, the proposed
framework was implemented in a high-performance computing
environment. The experiments were conducted on Kaggle's
cloud-based platform using dual NVIDIA T4 GPUs. The
software environment was configured using Python, TensorFlow,
and Keras, in addition to different essential libraries for model
implementation.

Hyperparameter Setup:

A carefully selected set of hyperparameters was configured
to ensure optimal performance and stability of the proposed
model. These settings were chosen based on experimental
validation and deep learning best practices to enhance
convergence efficiency, generalizability, and robustness. The

hyperparameter configuration is stated in Table 8.

Table 8: VGG16 Hyperparameters Setup
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Hyperparameter Value/Type
Added Layers 2 Dense Layers
Neurons per Layer Activation 128, 64

Function Regularization ReLU (both layers)

Batch Normalization A=10.001 for L1, 2= 0.01 for L2
Dropout Rate Applied after each dense layer
Output Layer 0.5 (after each dense layer)

Optimizer (Phase 1)

Softmax with 3 neurons (for 3-class classification)

Optimizer (Fine-Tuning) Adam
Initial Learning Rate Learning SGD (with momentum 0.9)
Rate Schedule 0.001

LR Callback

Batch Size (Phase 1)
Batch Size (Fine-Tuning) 32
Early Stopping 16
Loss Function

Linear warmup (5 epochs) + piecewise decay (*0.75 every 5 epochs)
ReduceLROnPlateau (min LR = 1e-6)

Patience = 5 (based on validation loss)

Categorical cross-entropy

Results on Primary Single-Source Dataset:

Training Performance:

First, we trained the proposed model on a single-source
dataset (IQ-OTH/NCCD) for a 60-epoch training cycle, divided
into a 30-epoch initial phase followed by two fine-tuning phases
of 20 and 10 epochs, respectively. To visualize the learning

process and verify model stability, the training and validation
dynamics were monitored throughout the multi-phase training
scheme for each fold. Figure 7 illustrates the accuracy and loss
paths, providing a clear view of the model's convergence and
generalization behavior by tracking performance on the training
set, an internal validation set, and a clean fixed validation set.

I

(©)

(d)

Figure 7: The Training and Validation Performance Across 4 Folds.
(a)—(d) show accuracy (top) and loss (bottom) for Folds 1—4. Curves represent the training set (augmented + SMOTE), internal
validation (from training), and validation (clean, fixed subset) across three training phases.

The learning curves presented in Figure 7 provide strong
evidence of a stable and effective training process. Across all four
folds, there is a consistent and smooth increase in accuracy and a
corresponding decrease in loss for all three data splits, indicating
successful model convergence.

Validation and Test Performance:

To quantitatively assess the best performance model
checkpoints, the maximum validation accuracies were recorded
for both the internal (augmented and SMOTE-balanced) and
fixed (clean) validation sets within each fold, as illustrated in
Figure 8.

The performance on the validation set (fixed and clean)
closely tracks the performance on the training and internal
validation sets, with only a minimal gap between peak
accuracies. This demonstrates that the model generalizes
exceptionally well to unseen, clean data and is not overfitting to
the augmented training distribution.

The progressive improvement across the initial training and
the two-phase fine-tuning stages further validates the efficacy of
the gradual unfreezing strategy, allowing the model to effectively
adapt its learned features without destabilizing the training
process.
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Figure 8: Peak Validation Accuracies Across Folds and Training Phases.
This figure compares the highest validation accuracies achieved on the internal (augmented and balanced) and fixed (clean) validation
sets for each of the four folds. Each bar represents the peak accuracy reached during the 60-epoch training, and the number annotated
on the bar indicates the specific epoch in that training phase where the maximum accuracy was recorded.

To comprehensively evaluate our proposed framework, the
best-performing model from each fold was saved in (keras)
format along with its corresponding weights. Upon completing
training across all folds, each model was independently evaluated

on the held-out test set using a comprehensive set of performance
metrics. The results, including mean and standard deviation
across all folds, are summarized in Table 9, providing insights
into the model’s effectiveness and stability.

Table 9: Detailed Performance Metrics of the Proposed VGG16 Framework Across 4-Fold Cross-Validation

FI Bal hen’
Fold Accuracy Loss mcc Dalanced Cohem’s o, \Uc  MSE RMSE MAE
Score Accuracy Kappa
F?ld 09910 09911 0.1605 09769  0.9583  0.9765 09765 09998  0.0543 02330  0.0271
led 09819 09821 0.1786 09465 09137  0.9450 0.9450 09909  0.1131 03363  0.0588
F(;ld 09910 09911 0.1705 09769  0.9693 09766 0.9766 09900  0.0407 02018  0.0226
led 09910  0.9911 0.1582 09845 09722  0.9844 09844 09890  0.0362 0.1903  0.0181
Mean 09887+ 0.988+ 0.1670+ 0.971% 09534+ 09706+ 0970 0.9927+ 0.0611+ 02404+ 0.0317+
£SD  0.0045  0.0045 0.0082 0.0159  0.0249  0.0166 +0.016 0.0046  0.0334  0.0619  0.0177

The results presented in Table 9 demonstrate the exceptional
performance and robustness of the proposed framework. The
model has achieved a mean accuracy of 0.9887 and a mean F1-
score of 0.9888, indicating superior classification capability.
Crucially, the low standard deviation across all metrics further
confirms the model's high stability and consistent performance
across different data partitions. However, while all folds
performed exceptionally well, Fold 4 emerged as the optimal
model, achieving the highest Matthews Correlation Coefficient

(MCC) (0.9845) and the lowest error rates (MSE of 0.0362) and
lowest loss (0.1582). This combination of high predictive
accuracy and minimal error makes it the most reliable candidate
for deployment, validating the model's potential for clinical
application. Furthermore, to provide a more rigorous assessment
of the model's stability and the certainty of its performance
estimates, the 95% confidence intervals (CIs) were calculated for
all key metrics across the four folds. These results are indicated
in Table 10.

Table 10: 95% Confidence Intervals for Key Performance Metrics Across Folds
The intervals [Lower Bound — Upper Bound] represent the reasonable range for the true performance metric, providing insight into
the model's statistical stability on each data partition (each fold).

Metric Fold 1 [95% CI] Fold 2 [95% CI] Fold 3 [95% CI] Fold 4 [95% CI]
Accuracy [0.9683 — 1.0] [0.9412-0.9910] [0.9683 — 1.0] [0.9683 — 1.0]
F1 Score (Macro) [0.9336 — 1.0] [0.8798 — 0.9774] [0.9472 — 1.0] [0.9336 — 1.0]
Balanced Accuracy [0.9067 — 1.0] [0.8472 — 0.9667] [0.9270 — 1.0] [0.9067 — 1.0]
AUC (OVR) [0.9976 — 1.0] [0.9964 — 1.0] [0.9995 — 1.0] [0.9978 — 1.0]
MCC [0.9482 — 1.0] [0.9041 — 0.9836] [0.9470 — 1.0] [0.9482 — 1.0]
Cohen's Kappa [0.9465 — 1.0] [0.8991 — 0.9835] [0.9457 — 1.0] [0.9465 — 1.0]

Log Loss [0.0251 — 0.0842] [0.0334 — 0.1456] [0.0203 — 0.0632] [0.0168 — 0.0706]
MSE [0.0 — 0.1267] [0.0362 — 0.2128] [0.0 — 0.0995] [0.0 — 0.1267]
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The confidence intervals in Table 10 provide a precise view
of the model's statistical reliability. For most validation folds, the
intervals are consistently narrow and have high lower
bounds. This suggests the model performs with high
reliability. Furthermore, the upper bound often reached 1.0,
indicating that the model is capable of near-perfect classification.
In contrast, Fold 2 showed wider confidence intervals and lower
performance bounds. This highlights that the data partition
contained more challenging instances. However, the model’s
performance remained excellent even on this difficult fold,
reinforcing its overall robustness. Additionally, the confidence
intervals for error metrics were tightly clustered near zero,
confirming low prediction error with high statistical confidence.
In summary, this analysis demonstrates that the model is not only
high-performing but also statistically stable, maintaining an
excellent performance profile even under challenging conditions.

Confusion Matrix, Classification Report, and AUC-ROC:

The classification of the best model on the test set reported
in Table 11  demonstrates the model's strong
performance. Notably, the model achieved perfect precision,
recall, and F1 scores for malignant cases. Performance on normal
tissues was also excellent. However, the recall for benign cases
was slightly lower, while precision remained perfect.

Furthermore, the confusion matrix in Figure 9 visually
confirms these results. It shows that the only misclassifications
were two benign cases incorrectly identified as
normal. Finally, the Receiver Operating Characteristic (ROC)
curve in Figure 9.b indicates outstanding diagnostic ability. Its
near-perfect Area Under the Curve (AUC) score signifies high
sensitivity and an extremely low false-positive rate. In
summary, these metrics collectively validate the model's high
accuracy and reliability, especially for identifying critical
malignant cases.

Table 11: Classification Metrics of Best Fold Model (Fold 4)

Class Precision Recall F1-Score Support
Benign (0) 1.00 0.92 0.96 24
Malignant (1) 1.00 1.00 1.00 113
Normal (3) 0.98 1.00 0.99 84
Weighted Accuracy 0.99 0.99 0.99 221
Confusion Matrix Multi-Class ROC Curve (Best Fold:4)
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Figure 9:(a) Confusion matrix showing the proposed model classification performance on the test set (Fold 4). (b) ROC curves for

Fold 4 showing AUC values of three classes reflecting superior discrimination capability across classes.

Furthermore, Figure 10 illustrates the model's predicted
probability distribution for each class, visually representing its
confidence in the classification decisions. This probability-based

visualization enhances interpretability and reinforces the model's
clinical reliability in distinguishing between different lung tissue

types.
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Figure 10: Samples of Probability Distribution Plot Among the Three Classes

Grad-CAM Visualizations Analysis:
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The proposed VGG16 model effectively localized the
relevant regions associated with abnormalities, focusing on areas
consistent with potential tumor presence, as shown in Figure 11.
Although not always perfectly aligned with the ground truth

annotations, these head maps demonstrate that the VGG16 model
captures significant discriminative features linked to malignant
characteristics offers potential guidance for clinical assessment.

Original Image Grad-CAM Image

Original Image Grad-CAM Image

Figure 11: Grad CAM Visualization

Generalization to Multi-Source Datasets:

While the proposed model performed exceptionally well
during 4-fold cross-validation on the primary IQ-OTH/NCCD
dataset, relying on a single data source can limit a model's proven
generalizability. To address the critical issue of domain shift
(where models often fail on data from new clinical
environments), conducted a rigorous generalization
assessment. Therefore, this evaluation aims to verify the model’s

we

capacity to generalize across varied imaging protocols, scanner
types, and patient populations, which is a critical requirement for
real-world deployment.

Dataset Composition and Label Harmonization:

To assess the model's generalization -capability, we
constructed a multi-source dataset. As detailed in Table 12, this
composite dataset was formed by integrating five public lung CT
datasets, resulting in a total of 29,546 images.

Table 12: Summary of Characteristics for the Unified Multi-source Lung CT Dataset

M I
Source Dataset Original Labels apped Format mage Labeling Notes
Labels Count
Normal, Labels already follow the
1Q-OTH/NCCD Normal, Benign, Malignant Benign, JPEG 1,097 . Y
. unified three-class scheme
Malignant
N I; A i L Mali histological
Chest CT-Scan ormal; A denocarcinoma, Large Normal, PNG / alignant histologica
cell carcinoma, Squamous cell . 1,000 subtypes were grouped
(Kaggle) ) Malignant JPEG - ;
carcinoma under "Malignant"
. . Nodules manually labeled
SPIE-AAPM-NCI L NOd“leSUS; ??lizr)n )N odules I\Z‘?’ﬁ;t Dll\io 15,931 by radiologists and
g g pathologically validated
Lung-RADS Dataset LR2, LR3 (E.;e.mgn Appearance); Benign, PICKL Labels interpreted ‘per‘Lung-
LR4A (Suspicious), LR4B (Very . 972 RADS categorization
(Mendeley) .. Malignant E
Suspicious) scheme
les; 1 ith 1
rell\tli?'n n(t)t(li:lies’;lzd}ll\?cs)gllltes \?v‘i:h Normal, DICO Malignancy labels derived
LIDC-IDRI Subset g gn Y Benign, 10,546 from radiologist consensus
high rating or confirmed Malignant M and pathology reports
malignancy £ P By Tep
. . Normal, All original labels
Final Unified - Benign,  JPEG 29,546  harmonized into a unified
Dataset .
Malignant 3-class format

Before beginning any experiments on this dataset, a critical
initial step involved a comprehensive data harmonization
process. This began with mapping all original labels into a
unified three-class scheme: Normal, Benign, and Malignant.
Next, all images were standardized to 8-bit grayscale format
using a fixed lung window (Level: 600 HU, Width: 1500 HU) to
normalize intensity values across varying acquisition protocols.
This harmonization process led to a clinically realistic class
imbalance, with the final distribution as follows: Malignant with
13,656 images (46.2%), Benign with 11,490 images (38.9%), and
Normal with 4,400 images (14.9%).

Re-training and Evaluation Results:

Following unification, our complete proposed methodology
was applied. The dataset was first split into training (70%),
validation (20%), and test (10%) subsets using stratified
Our established pipeline, including hybrid
preprocessing, class-specific data augmentation, and SMOTE-

sampling.

based balancing, was then applied exclusively to the training set.
Figure 12 shows class distribution (Benign, Malignant, Normal)
before and after augmentation and SMOTE in the training set.
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Figure 12: Class Distribution Before and After Balancing in The Multi-Source Training Set.

Following that, the proposed model was retrained and evaluated heterogeneity, offering a robust measure of the model’s real-
on the held-out test set. A single train-test evaluation was selected world generalizability. The training dynamics plots are illustrated
instead of cross-validation, given the dataset’s large size and in Figure 13.

Training and Validation Accuracy Across All Phases an Multi-Source Dataset Training and Validation Loss Across All Phases on Multi-Source Dataset)
00 17— - - - - - - - . - : - : - - - -

—s— Train Accuracy 14 —e— Train Loss
—m— Validation Accuracy ) —=— validation Lass.

0.80

Aceuracy
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Epoch Epoch

Figure 13: Training and Validation Accuracy (Left) and Loss (Right) Curves Across All Training
Phases on The Multi-Source Dataset

Performance Metrics and Comparison: framework maintained high performance, confirming its ability

When we evaluated on the held-out multi-source test set, the to adapt to data from unseen sources. Key evaluation metrics,
including agreement metrics and error-based metrics, are
summarized in Table 13.

model demonstrated excellent generalization capabilities. The

Table 13: Performance of Proposed Model on the Multi-Source Test Set

Metric Performance Score
Balanced Accuracy 0.9693
Loss 0.1503
AUC 0.9980
MCC 0.9427
Cohen's Kappa 0.9421
MSE 0.0193
RMSE 0.1390
MAE 0.0440
QWK 0.9497

The results in Table 13 show high predictive accuracy, effectively learned generalizable radiological features indicative
strong agreement scores, and low error values, indicating robust of lung pathology. These findings strongly support the model’s
generalization. Additional classification metrics are presented in robustness and highlight its potential for reliable deployment in
Table 14. The consistently strong performance of our proposed real-world clinical environments with diverse scanners and
model, even on a challenging and heterogeneous dataset, patient populations.
suggests that it did not overfit to a single data source. Instead, it
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Table 14: Classification Metrics on Multi-Source Test Set

Class Precision Recall F1-Score Support
Benign cases 0.93 0.98 0.96 1,149
Malignant cases 0.99 0.94 0.97 1,366
Normal cases 0.98 0.98 0.98 437
Accuracy 0.96 2,952
Macro avg 0.97 0.97 0.97 2,952
Weighted avg 0.97 0.96 0.96 2,952

Furthermore, Figure 14.b demonstrates a consistent increase
in validation accuracy across training phases (initial training,
two-phase fine-tuning), confirming the efficacy of selective
unfreezing. This aligns with the strong classification performance
in Figure 13. a: 1129 benign and 1289 malignant cases were

correctly identified, while normal cases achieved 429 accurate
predictions with minimal misclassifications (3 benign, 5
malignant). Critically, zero malignant cases were mislabeled as
normal, underscoring the model’s reliability. Together, these
results highlight robust generalization on diverse data.

Confusion Matrix
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Figure 14: (a) Final Confusion Matrix on Multi-Source Test Set. (b) Phase-Wise Best Validation Accuracy

4. DISCUSSION

This section interprets the experimental results presented in
Section 4, connecting them to the methodologies detailed in
Section 3. We discuss the significance of our findings and
compare our framework's performance to the existing methods,
highlighting its key advantages.

Summary and Interpretation of Findings:

The present study has successfully developed a lightweight,
accurate, and robust framework for lung cancer classification.
The outstanding performance reported in Section 4—including a
test accuracy of 0.9910 and a multi-source balanced accuracy
0f 0.9677—is the direct outcome of our careful methodological
choices.

The foundation of this success lies in the rigorous
preprocessing pipeline (Section 3.2). The comparative evaluation
confirmed that our hybrid filter effectively reduces noise while
preserving critical features, validated by excellent PSNR (39.88
dB) and SSIM (0.8845) scores. This ensured the model was
trained on high-quality data, which is crucial for achieving
reliable performance.

Furthermore, the lightweight model architecture (Section
3.5) proved highly effective. By strategically pruning the VGG16
model and employing a dual-phase fine-tuning strategy, we
achieved state-of-the-art accuracy while dramatically reducing
computational cost. This result demonstrates that architectural
efficiency and high performance are not mutually exclusive.

Finally, the most critical finding is the model's proven
generalization capability, substantiated by our two-layered
validation framework (Section 3.4). The model's stability was
confirmed internally with K-Fold cross-validation, but more
importantly, its real-world applicability was proven by
successfully retraining and evaluating it on a large,
heterogeneous multi-source dataset (as detailed in Section 4.4).
This comprehensive validation, supported by a full suite of
metrics (Section 3.7), addresses a critical gap in the literature and
confirms that the model is ready for clinical deployment.

Comparison with Existing Methods:

As evidenced by the comparative summary in Table 15, our
proposed framework addresses several critical gaps in the
existing literature. While numerous studies have achieved high
accuracy, our work distinguishes itself through a combination of
methodological rigor, proven generalization, and computational
efficiency.

First and most critically, our study confronts the
"generalization gap" head-on. The table clearly shows that the
vast majority of prior works, including those with near-perfect
accuracy scores like Tandon et al. (2022), Ghosh et al. (2023),
and Jassim et al. (2024), limit their validation to a single, often
small, dataset. In contrast, our framework not only achieves a
competitive accuracy of 99.1% on its primary single-source
dataset but also demonstrates robust performance on a large,
challenging multi-source dataset with a balanced accuracy
0f 96.9%. This dual-level validation provides a much higher
degree of confidence in the model's real-world clinical
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applicability; a feature largely is absent in the compared
literature. Second, our approach balances high performance with
computational efficiency. Many state-of-the-art results in the
table are achieved using computationally expensive ensembles
(Jassim et al., 2024; Kumaran et al., 2024) or large custom
models (Gupta et al., 2023). Our work takes a more practical
approach by using structured pruning to create a lightweight yet
powerful model. This makes our solution more feasible for
deployment in clinical settings with limited resources, a crucial
consideration that is often overlooked in the pursuit of marginal
accuracy gains.

Finally, our framework emphasizes methodological

transparency. We combine advanced preprocessing
with quantitative validation to ensure data quality. Also, we
integrate Grad-CAM for interpretability, aligning our work with
the best practices seen in the most recent studies by Kumaran et
al. (2024) and Klangbunrueang et al. (2025). In summary, while
prior works excel in specific areas, our study presents a more
holistic and clinically viable solution by delivering a model that
is simultaneously accurate, efficient, interpretable, and—most
importantly—proven to generalize across diverse data sources.

Table 15: Comparison of Methodologies and Performance in Recent Lung Cancer Classification Literature
This table provides a structured comparison of recent studies. The final row highlights our proposed model to facilitate a direct
comparison. Note: Acc: Accuracy, Sens: Sensitivity, Spec: Specificity, Prec.: Precision, Rec: Recall, MCC: Matthews Correlation

Coefficient, AUC: Area Under the Curve, XAl: Explainable Al, --: Not specified or Not Applicable.

Augmentati
CTL Classificat
Study ung. Preprocessing on/ Data . asstiiea XAI Model & Results
Dataset & Size . ion Type
Balancing
Basic (DICOM t Basic (fli * VGG16:
Anand eral. | 1Q-OTH/NCCD | Basic (DICOMto 1 Basic (flip, .
(2022) (977 images) JPG, Resize, rotate, zoom, Binary - Acc. 0.96, Sens. 0.94, Spec.
& Normalize) Brightness) 0.96
* VCNet (Hybrid):
Tandon et al. LIDC-IDRI Basic (Resize, Fliv. Rotate Bina Ace. 0.99 ; 1( 0};;11 LU C
(2022) (7,500 images) Normalize) P, Y PP BT AL
0.991
Resize
’ * Modified AlexNet-SVM:
Naseer et al., LUNAL6 Normalize, Patch-based Bina Acc O(;i l91769d Sele:s( OetQSSVFl
(2023) (888 CT scans) Patch Extraction, vy o ’0 977' R
Segmentation )
Kaggle Hist. Denoisi Basi . * ResNet
Sangeetha ef aggle Hist. & en0151.ng, asic _ Multi- . esNet50
al. (2023) CT Normalize, Augmentatio class -- Histopathology Acc: 0.988
' (750 images) CLAHE n CT scan Acc: 0.847
SPIE-AAPM
1 i -Resi
(18,000 images este, Shearing, « Custom CNN:
divided into 4 Normalize . .
.. Zooming, . Acc: ranging from 0.952 to
Gupta et al. small sub- -Denoising . Multi- .
. Horizontal -- 0.998 across different small
(2023) datasets for (Gaussian and o . class
.. . Flipping, Fill sub datasets, Avg F1.0.97,
training: 2805, median filters) mode Ave Rec. 0.977
2600, 2431, -CLAHE) ' Vg hee. B
3561)
* CNN:
-Resize, Acc. 0.867, Prec. 0.939,
Smoothi Rec.0.704, AUC 0.946, F1:
Ghosh et al. | 1Q-OTH/NCCD MOootme, . Multi- ec.0. 0% :
(2023) (1,097 images) Threshold, Flip, Rotate class - 0.74
’ & Histogram, * VGGl6:
Equalization Acc. 0.982, Prec. 0.956, Rec.
1.0, AUC:1.0, F1: 0.979
* ResNet: Acc 0.90, loss 0.16.
AlShouka Rptatlon, * MobileNetV2: Acc. 0.93,
. | Kaggle Chest CT . . Shift, Shear, . loss, 0.16.
and Alheeti . Resize, Normalize . Binary -- .
(1,200 images) Zoom, flip, » Xception: Acc. 0.92, 0.19
(2023) .
Fill mode. loss.
* VGG16: Acc. 0.91, 0.18 loss.
S:f'g;’]t;? LIDC-IDRI Dgzgﬁif Binry « HDE-NN (Hybrid):
bset h - Acc. 0.963 .0.952
(2023) (subsets) Enhancement « > Sens
Resizi
Benamara et | 1Q-OTH/NCCD Briesli:;%s Multi- * DenseNet169 (Modified):
al. (2024) (1,097 images) g ’ class Acc.1.0
Sharpness
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* Ensemble (VGG16 +
. ResNet50 + InceptionV3):
Kumaran e | 1Q-OTH/NCCD Resize, RGB 51\(/:110 1E, Multi- | Grad- | Acc. 0.981, Bal. :cc. 0.96)9,
al. (2024) | (1,097 images) ;;’rlxzsze Weiga;tsing class | CAM | MCC. 0.968, Kappa: 0.969,
MSE. 0.061, RMSE. 0.249,
MAE. 0.033
Brightness,
Alheeti et al. Kéﬁ,glel %l(;(e)st Sharpness Flin. R . * MobileNetV2: Acc. 0.98, F1.
(2024). . -, Conversion, 1p. Rotate Binary N 0.98
images) ..
Resizing.
flipping *Ensemble
Jassim et al. | Kaggle Chest CT Resize, RGB e Multi- (ResNet50/101+EfficientNetB
. rotation, -
(2024). (1,000 images) convert scaling class 3)
* Validation Acc. 0.994
Klangbunrue IQ-OTH/NCCD Image resizing, Rotat.lon, Multi- Grad- ) V.GG16: Ace. 0.981
ang et al. (1.097) normalization Scaling, class CAM » MobileNetV2: Acc. 0.971
(2025). ’ Flipping * ResNet50: Acc. 0.933
Modified VGG16:
- (Single Source Dataset)
Acc. 0.991, Bal. Acc. 0.9722,
*1Q- MCC. 0.984, Kappa &QWK:
OTH/NCCD Hybrid Filter + SMOTE+ Grad 0.984, MSE. 0.036, F1. 0.9911,
. (1,097 Single- CLAHE Hybrid Multi- AUC. 0.989
This Study o . . - .
source) (Quantitatively Augmentati class CAM - (Multi-Sources Dataset)
* Multi-sources Validated) on Acc. 0.964, Bal. Acc. 0.969,
(29,546 images) MCC. 0.943, Kappa: 0.942,
MSE. 0.0193, F1. 0.966,
QWK. 0.949 AUC. 0.998

Study’s Limitations and Future Directions:

Despite the promising results, this study has several
limitations that open avenues for future research. First, our study
focused on enhancing the VGG16 architecture. While this
demonstrated the power of our methodology, future work should
extend this framework to other architectures, such as EfficientNet
or vision transformers, to explore potential performance trade-
offs.

Second, while our model accurately classifies entire images,
it does not perform lesion segmentation. Integrating an
automated segmentation module is a critical next step that would
enhance the system's clinical utility by providing precise lesion
localization and boundaries. Finally, while Grad-CAM improved
model interpretability, clinical expert validation is needed. Future
work can include deploying the model as an app/API for real-
time clinical use.

CONCLUSION

This study successfully developed and validated a
lightweight, accurate, and robust deep learning framework for
automated lung cancer classification from CT images. By
systematically addressing common challenges in data quality,
model efficiency, and validation, we have created a solution
poised for real-world clinical application. Our approach
integrated a quantitatively validated preprocessing pipeline, a
streamlined VGG16 architecture improved through pruning and
fine-tuning, and a rigorous multi-layered validation strategy. The
resulting model demonstrated outstanding and highly
generalizable performance on both single-source and challenging

multi-source datasets. Furthermore, the inclusion of Grad-CAM
for model interpretability enhances its clinical utility by
providing transparent, visual evidence for its predictions.
Ultimately, this work presents a holistic and methodologically
sound framework that sets a high standard for developing
clinically viable computer-aided diagnosis (CAD) systems for
the early and reliable detection of lung cancer.
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