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Breast cancer remains one of the most serious health challenges worldwide, where early and 

accurate diagnosis can significantly improve patient outcomes. Traditional diagnostic 

methods often rely heavily on expert interpretation, which may lead to inconsistencies or 

delays in decision-making. To address this issue, this research provides a deep-learning 

framework that uses the EfficientNetV2B0 model in combination with Grad-CAM 

(Gradient-weighted Class Activation Mapping) to provide illustrated explanations to detect 

breast cancer using ultrasound and MRI datasets. Our method addresses serious challenges 

such as class imbalance and irrelevant image characteristics by employing SMOTE 

(Synthetic Minority Over-sampling Technique) oversampling and Region of Interest (ROI) 

extraction for BUSI (Breast Ultrasound Images) datasets. The Grad-CAM approach 

improves reliability and transparency by providing visual proof that supports each decision, 

enabling healthcare professionals to better understand the AI's predictions. Trained and 

assessed on two different medical imaging datasets, the framework obtained extraordinarily 

high accuracy (98.97% on BUSI and 99.55% on MRI), along with low prediction error and 

high reliability. The model is both accurate and understandable, making it ideal for clinical 

usage. It is also faster and more dependable than current approaches, making it highly 

beneficial. 

 KEYWORDS: Deep Learning, Breast Cancer, Explainable Artificial Intelligence (XAI), Region of 

Interest (ROI), Grad-CAM heatmap. 
 

1. INTRODUCTION 

        Breast cancer is a primary cause of death among 

women worldwide, accounting for a significant number of 

cancer-related fatalities despite remarkable advances in 

healthcare and screening technologies (Waks & Winer, 

2019). Since 2020, the global burden of breast cancer has 

increased, along with considerable geographic disparities. 

In 2022, there were an anticipated 2.3 million new cases 

and 670,000 deaths worldwide. If current patterns 

continue, yearly consistence is predicted to reach 3.2 

million, with a mortality rate of 1.1 million by 2050 

(Arnold et al., 2022). This incidence is expected to have a 

disproportionate effect on countries with low Human 

Development Indexes (HDI), as access to early 

identification and treatment remains limited. While some 

high-HDI nations have reduced death rates, many low-

HDI nations are witnessing increases, highlighting 

persistent global disparities in breast cancer outcomes.  

Among the diversity of imaging modalities available, the 

breast ultrasound is recognized as a cornerstone in breast 
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cancer detection due to its non-invasive nature, real-time 

imaging abilities, and absence of ionizing radiation, 

making it a preferred option for repeated examinations 

(Bhushan et al., 2021). Ultrasound shines at distinguishing 

between solid and cystic tumors, and it’s particularly 

helpful for women with dense breast tissue or when 

mammograms leave questions unanswered (Burkett & 

Hanemann, 2016). Yet, ultrasound is just one piece of the 

puzzle. On the other hand, Magnetic Resonance Imaging 

(MRI) has become an equally vital tool in the fight against 

breast cancer. MRI offers incredibly detailed, cross-

sectional images of breast tissue, revealing subtle 

differences that might slip past ultrasound or 

mammography. Its high sensitivity makes it especially 

valuable for detecting both primary tumors and additional 

lesions, which is crucial for patients with dense breasts or 

those at higher risk (Ma et al., 2025). In this way, MRI 

does not replace ultrasound, but complements it, providing 

a broader, more nuanced view and empowering clinicians 

to make treatment decisions with greater confidence. 

These image techniques work well together; each 

contributes to the others' strengths, ensuring that patients 

receive the best possible, comprehensive therapy. On top 

of that, the two forms of images have distinct and 

complementary roles in assessing breast cancers. Breast 

tumors are classified into two types in medical terms: 

benign and malignant. Benign tumors are often harmless, 

rarely spread, and can be removed surgically with a low 

risk of regrowth. Tumors that are malignant, on the other 

hand, attack nearby body tissues, can spread to other 

organs, and present an even greater chance of death 

(Akram et al., 2017). Precise tumor classification is 

critical, as it directly affects treatment methods. For benign 

cases, this involves careful observation; for malignant 

situations, it requires aggressive actions such as 

immunotherapy, radiation therapy, chemotherapy, and 

surgical removal (Waks & Winer, 2019). The issues with 

traditional ultrasound image interpretation, including time-

consuming analysis, differences among radiologists, and 

the risk of incorrect diagnosis due to hidden or unclear 

imaging features, can be resolved through the 

revolutionary adoption of Artificial Intelligence (AI) in 

medical imaging. Deep learning, a subset of AI, uses large 

datasets and powerful neural networks to discover 

complex patterns in images, often surpassing human 

experts. Even though it's interesting, the "black box" 

characteristics of many models have limited the adoption 

of deep learning in healthcare environments (Rasheed et 

al., 2022). Even while these models work effectively, their 

absence of openness makes it hard to fully understand the 

reasoning behind their predictions. Specialists may 

become suspect as a result of this, because even slight 

input changes could lead to serious mistakes, weakening 

trust and responsibility (Hassija et al., 2024). These 

concerns have helped in the creation of Explainable 

Artificial Intelligence (XAI), a multifaceted area focused 

on improving the understanding of AI systems by 

explaining their method of decision-making (Adadi & 

Berrada, 2018). XAI is especially crucial in healthcare as 

transparency ensures that AI-powered findings align with 

clinical expertise and diagnostic standards (Albahri et al., 

2023). The most prevalent XAI methods are gradient-

based, which perform well with complicated nonlinear 

models (Mersha et al., 2024). Using the EfficientNetV2B0 

model (Tan & Le, 2021), a state-of-the-art Convolutional 

Neural Network (CNN) known for its ability to balance 

computational efficiency and classification prowess, this 

study presents an advanced AI framework for classifying 

breast ultrasound images as benign or malignant. 

EfficientNetV2B0 optimizes performance through a 

compound scaling approach and Fused-MBConv layers, 

making it ideal for resource-constrained contexts like 

clinical settings. Meanwhile, the Synthetic Minority Over-

sampling Technique (SMOTE) addresses the problem of 

class imbalance in medical image datasets, where benign 

cases are often more numerous than malignant cases 

(Chawla et al., 2002). This approach generates artificial 

samples from the minority (malignant) subset, ensuring 

balanced training while reducing bias towards the majority 

class. Besides, by highlighting features such as irregular 

boundaries or echogenic textures, the Region of Interest 

(ROI) for BUSI dataset extraction reduces background 

noise and improves diagnosis by focusing the model on 

tumor-specific areas. Our approach relies on Gradient-

weighted Class Activation Mapping (Grad-CAM), an XAI 

technique that produces visual heatmaps showing the 

image regions most valuable to the model's 

predictions.(Selvaraju et al., 2020). By bridging the gap 

between clinical understanding and computational outputs, 

those heatmaps enable specialists to verify that the model's 

highlights correspond to established diagnoses, thereby 

fostering trust and acceptance of clinical methods. To test 

our model, the Breast Ultrasound Images BUSI dataset and 

the Breast Cancer Patients MRI dataset were employed. 

The primary findings of this research are as follows: 

1. The proposed method uses EfficientNetV2B0 to 

achieve a remarkable result 99.55% for test accuracy on 

the MRI dataset and 98.97% on the BUSI dataset, going 

over many state-of-the-art techniques. 

2. By integrating SMOTE and ROI extraction, the 

model’s sensitivity and specificity is improved, effectively 

addressing class imbalance while sharpening its focus on 

key diagnostic features. 

3. The use of the XAI technique Grad-CAM in this 

work offers clear visual insights into the model’s decision-

making, bridging AI predictions with radiological 

expertise to boost its practical value in clinical settings. 

        The structure of the paper is structured as follows: 

Section 2 presents related work. Materials and methods, 

which outline the dataset, preprocessing steps, model 
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architecture, method, and evaluation metrics, are presented 

in Section 3. Furthermore, the results of this study and their 

discussion are reported in Section 4, and finally, the 

conclusion, limitation, and future work are presented in 

Section 5. 

RELATED WORKS 

        Over the past few years, researchers have been 

exploring novel ways to use artificial intelligence to 

enhance breast cancer screening using different types of 

images. These investigations aim to develop powerful 

computer models capable of analyzing images, identifying 

tumors, and determining whether tumors are cancerous. 

These efforts, which combine cutting-edge technology 

with medical imaging, aim to make diagnoses faster, more 

accurate, and easier for doctors to utilize. While each 

strategy has advantages and disadvantages, they all 

demonstrate how AI is changing the way it identifies and 

comprehends breast cancer, offering the promise of 

improved outcomes in the future.  

In this context, (Vigil et al., 2022) developed a deep 

learning model to segment breast lesions and extract 

radiomic characteristics from ultrasound pictures. The 

model uses a convolutional autoencoder and a contracting-

expanding architecture to reduce high-dimensional 

radiomic data. The model's dual functionality reduced the 

need for separate pipelines, thereby increasing efficiency. 

A random forest classifier attained a cross-validated 

accuracy of 78.5% in differentiating between malignant 

and benign cases.  

        Building on the theme of integrated workflows, 

(Podda et al., 2022) introduced an automated deep learning 

system that used a mix of CNN models to classify and 

segment breast ultrasound images. By combining models 

such as ResNet50, InceptionV3, and Xception via soft 

voting, it achieved 91% classification accuracy. 

Segmentation was handled using U-Net variants, with a 

method that refined the masks over time, achieving a 82% 

Dice score. Overall, it outperformed individual models and 

existing state-of-the-art methods. 

        In addition, advancing multi-modal integration, the 

researcher in (Pathan et al., 2022) utilized a multi-headed 

convolutional neural network (CNN) to classify breast 

cancer employing ultrasound images from the BUSI 

dataset. The program learned raw and masked images 

separately before merging them to form a lightweight 

model. The limitations included a small sample size, 

limited computational resources, and the danger of 

overfitting. The technique achieved 92.31% accuracy (±2), 

outperforming single models (78.97% raw, 81.02% 

masked pictures), and reducing misclassification, 

especially in malignant cases.  

        The researchers in (Cruz-Ramos et al., 

2023)employed deep learning to create a computer-aided 

diagnosis system for categorizing benign and malignant 

breast cancers. The system extracted deep features using 

DenseNet-201, in addition to bespoke features such as 

HOG, ULBP, and shape descriptors. Feature selection was 

done using genetic algorithms and mutual information, and 

classification was done with XGBoost, AdaBoost, and 

MLP. The fusion strategy outperformed previous methods, 

increasing classification accuracy by 97.6%.  

        The authors in (Zhang et al., 2023) proposed a 

semantic-aware transformer (SaTransformer) for unified 

breast cancer classification and segmentation. The method 

used an encoder-decoder architecture based on the U-Net 

and a DAM to reduce computational complexity. Among 

the challenges faced were memory overhead, task 

interactions, handling imprecise tumor boundaries, and 

low signal-to-noise ratios. The SaTransformer performed 

well on the BUSI (97.97% accuracy, DSC: 86.34%) and 

UDIAT datasets, improved feature representation, and 

reduced computational costs.  

        The AEGANB3 method, suggested by (Luong et al., 

2024), combines a self-attention mechanism for breast 

cancer detection with a Deep Convolutional Generative 

Adversarial Network (DCGAN) to address data shortage 

issues. DCGAN was used for data augmentation, while 

EfficientNetB3 was employed for transfer learning and 

fine-tuning. The main outcome was the self-attention 

technique's improved feature extraction and 98.01% 

classification accuracy. 

         However, according to (Sahu et al., 2024)Strategies 

from controlled high-performance systems were combined 

of develop a self-learning breast cancer diagnosis system. 

The researchers merged three transfer learning models: 

AlexNet, ResNet, and MobileNetV2. To improve image 

quality prior to classification, a Gaussian-Laplacian 

preprocessing was used. The method had a high accuracy 

of 97.75% for detecting malignant tumors.  

        Based on the developments in (Jabeen et al., 

2024)The authors suggested a deep learning architecture 

for the classification of breast cancer tumors using 

ultrasound images. The structure includes a combination 

of EfficientNet-b0 with a gated recurrent unit (GRU) and 

modified ResNet-18 with multi-head self-attention. 

Performing data augmentation, transfer learning, with a 

novel cuckoo search-based feature selection technique 

merged with standard error mean computation. Feature 

fusion used a zero-padding maximum correlation 

coefficient technique, while Grad-CAM supplied 

explainability; the framework obtained 98.4% accuracy.  

        The authors in (Nasir et al., 2022) developed a breast 

cancer detection model that fine-tunes a pretrained 

AlexNet neural network using MRI images. To adapt 

AlexNet for distinguishing between healthy and cancerous 

breast tissue, they modified the first and last three layers of 

the network. Since labeled MRI data is often limited, they 

used transfer learning to overcome this challenge. Their 
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approach proved highly effective, achieving a test 

accuracy of 98.1% and a sensitivity of 99%.  

        Many state-of-the-art methods in prior work do not 

incorporate explainable AI (XAI) techniques, but only 

two, Luong et al. (2024) and Jabeen et al. (2024), 

explicitly applied them, as highlighted in Tables 3 and 4. 

This underlines a gap in interpretability across much of the 

existing literature. In response, our approach leverages 

Grad-CAM to enhance model transparency. 

2. MATERIALS AND METHODS 

        In this section, an advanced deep learning framework 

is presented to classify breast cancer images as benign or 

malignant. The suggested method used the BUSI dataset 

and MRI dataset to conduct the experimental procedures, 

as shown in Figure 1. It begins with two different datasets 

as input images, which are preprocessed by resizing to 299 

× 299 pixels. One of the datasets, BUSI, uses ROI to target 

tumor-specific regions, and the resulting images are then 

sent to the EfficientNetV2B0 model, which performs 

classification. We assess the model's predictions using 

Grad-CAM, which produces a heatmap highlighting the 

image regions most influential in the model's decision. By 

examining these regions, clinicians could have a deeper 

understanding of the model's decision-making procedure.

 

Figure 1: Schematic Diagram of The Proposed Model 

Datasets Description: 

        This work uses two publicly accessible datasets for 

breast cancer identification: the Breast Ultrasound Images 

Dataset (BUSI) and the Breast MRI dataset. BUSI (Al-

Dhabyani et al., 2020) is a publicly available benchmark 

dataset designed for breast cancer diagnosis and 

classification. The data were collected in 2018 at Baheya 

Hospital in Cairo, Egypt, to support early detection and 

treatment of breast cancer in women. It included 600 

patients varying in age from 25 to 75 years, and the BUSI 

has 1,578 ultrasound images split into three different 

subsets: normal, malignant, and benign, each of which has 

a segmentation mask that defines the borders of the 

lesions.  

        The second dataset employed is the publicly available 

"Breast Cancer Patients MRI's" dataset published on 

Kaggle (Uzair Khan, 2021), which can be retrieved 

from https://www.kaggle.com/uzairkhan45/breast-cancer-

patients-mris. It is released under a CC0 license, indicating 

public domain, but this only confirms it is an aggregated 

set of images from public sources. The dataset contains 

1,480 breast MRI images divided into two types: Healthy 

(Benign) and Sick (Malignant). The dataset is a great 

resource for improving automated breast cancer 

identification and diagnosis using MRI images. 

Datasets Splitting: 

        The BUSI dataset and Breast Cancer Patients MRI 

dataset have both been divided into three distinct subsets: 

training, validation, and testing. The training set 

contains 70% of the total data, while the remaining 30% 

was evenly split between validation and testing subsets, 

with 15% assigned to validation and 15% to testing. The 

decision of allocate 70% of the data to training was 

informed by empirical validation. We experimented with 
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various train-validation-test split ratios (e.g., 60-40, 80-

20), and found that the 70%-30% split consistently yielded 

the best performance in terms of model generalization and 

stability on both datasets. This suggests that allocating a 

larger portion of the data to training helps the model learn 

more robust feature representations. Given the relatively 

limited size of both the BUSI and Breast Cancer MRI 

datasets, using 70% of the data for training is appropriate 

to maximize the available information for the learning 

process, while still preserving sufficient data in the 

validation and test sets for reliable evaluation. Table 1 and 

2 shows the distribution of samples for BUSI and MR, 

respectively. 

 

Table 1: Class-Wise Distribution of Samples Across Training, Validation, And Test Sets for BUSI Dataset 

Dataset Class Images Training Set Validation Set Test Set 

BUSI 

Benign 437 305 66 66 

Malignant 210 147 32 31 

Total 647 452 98 97 

 

Table 2: Class-Wise Distribution of Samples Across Training, Validation, and Test Sets for The Breast Cancer Patients 

MRI Dataset 

Dataset Class Images Training Set Validation Set Test Set 

MRI 

Healthy 740 518 111 111 

Sick 740 518 111 111 

Total 1480 1036 222 222 

 

Data Preprocessing: 

        To facilitate efficient deep learning analysis of breast 

ultrasound images, the BUSI dataset was first prepared by 

excluding normal cases, focusing on distinguishing 

malignant from benign lesions. Then, to highlight tumor 

locations, the entire dataset was preprocessed by 

downscaling images to a 299×299-pixel resolution, 

extracting ROIs using masks, resizing and normalizing the 

masks, and proportionally scaling them to match the 

original image size. This same process was applied to the 

Breast Cancer Patients MRI dataset. While explicit pixel 

normalization of the raw images was omitted due to the 

built-in normalization layer in the EfficientNetV2B0 

model, the naturally high contrast between tumors and 

surrounding glandular tissue served as a key visual cue 

during training. To further enhance model performance, 

class imbalance was addressed using SMOTE, by 

flattening each image of size 299×299×3 into a one-

dimensional vector (268,203 features) and generating 

synthetic samples through interpolation in this high-

dimensional pixel space. Although this approach does not 

preserve the spatial structure inherent in image data, it 

enables the creation of new minority class instances 

without duplicating existing ones, helping the model learn 

more effectively and reduce prediction bias, thereby 

enhancing the diversity of training examples. This non-

traditional application of SMOTE was motivated by 

practical constraints and the need for a reproducible 

oversampling baseline, as it has been shown to improve 

model performance in imbalanced settings (Chawla et al., 

2002). The use of SMOTE with CNNs and pre-trained 

models has been supported by several studies. It has been 

applied effectively to brain MRI (Rajaan et al., 2024) and 

breast cancer imaging (Joloudari et al., 2023), confirming 

its adaptability for improving learning from imbalanced 

medical image data. For the BUSI dataset, SMOTE was 

applied during training, increasing the number of training 

images to 610; however, it did not affect the MRI dataset. 

This entire preprocessing chain aimed to improve input 

data quality without compromising anatomically 

meaningful texture patterns, which are crucial for disease 

classification. 

Region of Interest (ROI): ROI, a key idea in image 

processing, computer vision, and medical imaging, is a 

specific group of data chosen for a specific study by 

identifying important areas rich in information, such as 

tumors in medical imaging (Wang, 2001). In medical 

imaging, ROI typically highlights abnormal lesions or 

tumors identified through MRI, mammography, or 

ultrasound (Nieto-Castanon et al., 2003). Accurate ROI 

segmentation is crucial for distinguishing benign from 

malignant tumors, aiding diagnosis and early detection 

(Krithiga & Geetha, 2021). In this study, the ROI was used 

to focus the model’s attention on tumor areas in breast 

ultrasound BUSI only. By applying masks to isolate and 

resize these regions, we preserved important details while 

minimizing background noise, improving the   
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 model’s ability to differentiate between benign and 

malignant cases. Figure 2 illustrates the ROI extraction 

process used to guide training for BUSI only. In the MRI 

dataset, we did not perform ROI extraction because 

segmentation masks were unavailable.

Figure 2: The ROI Extraction Process Used to Guide Training 

XAI Grad-CAM Technique: Grad-CAM (Selvaraju et 

al., 2020) is an XAI approach that enhances understanding 

of CNNs by providing visual explanations. It is versatile 

and applicable to a wide range of use applications, such as 

visual question answering and picture categorization. 

Grad-CAM can identify model faults, detect bias, and 

enhance adversarial resilience. Therefore, it improves 

visualization and produces high-resolution data in medical 

imaging when used with Guided Backpropagation. 

Empirical tests have demonstrated its utility for weakly 

supervised localization and trustworthy assessment, both 

of which are critical for model validity. Our proposed 

model's decision-making process was interpreted using 

Grad-CAM visualizations. Figure 3 displays the final 

heatmap generated from the model’s output, which 

highlights locations of relevance that impact the model's 

predictions for the BUSI dataset, whereas Figure 4 

presents the highlighted locations of relevance that impact 

the model's predictions for the Breast Cancer Patients MRI 

dataset.  

 

Figure 3: Grad-CAM Visualization for Model Interpretability BUSI Dataset 
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Figure 4: Grad-CAM Visualization for Model Interpretability Breast Cancer Patients MRI Dataset 

Model Used in This Study: EfficientNetV2B0:    

        In this study, the proposed method used 

EfficientNetV2B0 pre-trained model (Tan & Le, 2021) 

which is a compact and efficient variant within the 

EfficientNetV2 family that redefines the balance between 

model size, training speed, and accuracy. This model is 

developed by combining a progressive learning 

methodology with a state-of-the-art training-aware neural 

architecture search. The adoption of Fused-MBConv 

operations in the early layers significantly enhances the 

effectiveness of training by replacing traditional depth 

wise convolutions, with 7.4 million parameters and 0.7 

billion FLOPs, EfficientNetV2B0 defeats bigger models 

like ImageNet (Tan & Le, 2021). In some situations, it also 

offers a notable improvement in inference speed, more 

than two times faster than earlier small-scale models, 

claiming that the combo of efficiency and power makes it 

excellent for limited resource usage, such as mobile or 

edge devices, without losing precision. In addition, the 

first normalization layer is more than just a preprocessing 

step; it is a key component of EfficientNetV2B0's 

efficiency accuracy trade-off, showing the design mindset 

for execution in limited situations. The model was selected 

for its strong performance in transfer learning scenarios, 

particularly where data is limited or imbalanced, as is 

common in medical imaging. In our implementation, the 

ImageNet-pretrained EfficientNetV2B0 was fine-tuned for 

classification tasks involving breast ultrasound and MRI 

images. 

        The model was initialized with pretrained ImageNet 

weights and modified by removing its original 

classification head (include top=False). Input images of 

size 299×299×3 were fed into the network and passed 

through the EfficientNetV2B0 backbone. A Global 

Average Pooling layer was applied to reduce the spatial 

dimensions, resulting in a 1280-dimensional feature 

vector. This vector was then passed to a dense output layer 

with 2 units and a softmax activation function to enable 

multi-class probability prediction (i.e., binary 

classification). We fine-tuned it end-to-end to adapt the 

pretrained features to the breast cancer imaging task. The 

model architecture is illustrated in Figure 5, which shows 

the flow from input to output.

 

Figure 5: The Block Diagram of The EfficientNetV2B0 Architecture 

        The choice of EfficientNetV2B0 was motivated by its 

strong generalization ability in transfer learning tasks, 

particularly under conditions of limited or imbalanced 

medical imaging datasets such as breast ultrasound and 

MRI. The use of global average pooling and a lightweight 

dense classifier enhances generalization, and the final 

model supports efficient deployment in clinical and 

resource-constrained environments. 
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Evaluation Metrics:  

        The suggested model's performance in this study for 

classifying the breast cancer dataset BUSI is evaluated 

using recall, accuracy, precision, and F1 Score (Jeni et al., 

2013) has computed, which are shown as follows:

 

Accuracy (ACC)  = 
(TP + TN) 

(TP + FP + TN + FN)
      

(1) 

Recall (Sensitivity) =  
TP

(TP + FN)
   

(2) 

Specificity =  
TN

 (FP + TN) 
    

(3) 

Precision =   
 TP

(TP + FP)
    

(4) 

F1 Score = 
 2 ∗ (Precision ∗ Recall)

Precision + Recall
   

(5) 

 

The ROC curve shows the false-positive rate (x-axis) and 

true-positive rate (y-axis)  

True positive (TP) samples are those that were correctly 

predicted as malignant, whereas false positive (FP) 

samples are those that were forecasted as malignant but 

were really benign. True negative (TN) denotes correctly 

predicted benign samples, whereas false negative (FN) 

denotes predicted benign samples that are really 

malignant. 

EXPERIMENTS AND RESULTS 

        In this part of the study, the experimental results of 

applying the EfficientNetV2B0 model to the BUSI dataset 

and the Breast Cancer Patients MRI dataset, which 

achieved high performance in breast cancer diagnosis, are 

described. The accuracy measure, sensitivity rate, 

precision rate, F1-Score, AUC, and computing time 

(seconds) are used to calculate each classifier's 

performance. For the training of the deep models, we 

divide the dataset into a ratio of 70:15:15. This means that 

70% of the images of each class have been utilized for the 

training of the models, and the remaining 30% used 15% 

for validation and test 15%. In addition, several 

hyperparameters have been used to train deep models. The 

key hyperparameters used in the experiments are 

summarized in Table 3.  The entire experimental process 

was conducted using Kaggle’s free GPU environment 

(NVIDIA GPU P100), using Python and TensorFlow 

libraries, and all of these hyperparameters were selected 

after extensive experimentation. Various combinations 

were tested, and this configuration consistently delivered 

the best performance in terms of training stability, 

convergence, and validation accuracy. While many values 

could have been used, these settings struck a strong 

balance between learning efficiency and generalization. 

By sharing this matrix, we aim to demonstrate the 

importance of careful tuning and provide transparency for 

reproducibility.

 

Table 3: The Key Hyperparameters Used in The Experiments 

Hyperparameter Value 

Learning Rate 0.0001 

Optimizer Nadam 

Loss Function Sparse Categorical Cross-entropy 

Number of Epochs 22 

Mini-batch Size 32 

Momentum (Nadam does not use explicit momentum) 

Environment Kaggle (NVIDIA GPU P100) 

Libraries Python + TensorFlow  
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3. RESULTS 

        The proposed framework demonstrated high 

computational efficiency and strong performance on both 

the BUSI and MRI datasets. The BUSI dataset was first 

prepared by excluding normal cases to focus on 

distinguishing malignant from benign lesions. The total 

training time was approximately 121.36 seconds, with an 

average inference time of 0.09 seconds per image for the 

BUSI dataset. The model achieved test accuracy of 

98.97% and an ROC-AUC score of 99.95%, indicating 

perfect discrimination between benign and malignant 

breast tumors. When evaluated on the Breast MRI dataset, 

the framework continued to perform exceptionally well. 

Training was completed in just 4 minutes and 23 seconds, 

and the evaluation phase took only 2.26 seconds. The 

model achieved a test accuracy of 99.55% and an ROC-

AUC score of 99.9, confirming its ability to effectively 

distinguish between healthy and cancerous cases in MRI 

scans. These results highlight the robustness, speed, and 

accuracy of the proposed framework in classifying breast 

cancer using both ultrasound and MRI imaging modalities. 

Our models Consistency 

existing approaches in terms of evaluation metrics, as 

shown in Tables 4 and 5.

 

Table 4: Performance Comparison with Existing Models and MRI Dataset. 

Reference Accuracy F1-Score 
Sensitivit

y 
Specificity XAI Tool 

Dataset 

class 

(Nasir et al., 2022) 98.1% 98.1% 99% 97.1% - B-M 

The proposed method 99.55% 99.54% 99.54% 99.09% 
Grad-

CAM 
B-M 

 

Table 5: Performance Comparison with Existing Models and Busi Dataset 

Reference Accuracy F1-Score Sensitivity Specificity XAI Tool 
Dataset 

class 

(Vigil et al., 2022) 78.5% - - - - B-M 

(Podda et al., 2022) 91.14% 91.14% - - - B-M-N 

(Pathan et al., 2022) 92.31% 93% - - - B-M-N 

(Cruz-Ramos et al., 2023) 96.10% 96% 96% 96% - B-M-N 

(Zhang et al., 2023) 97.97% 98.20% 98.31% 93.34% - B-M-N 

(Luong et al., 2024) 98.01% 98.10% - - Grad-CAM B-M-N 

(Sahu et al., 2024) 96.92% 97.70% 98.08% 94.62% - B-M-N 

(Jabeen et al., 2024) 98.4% 98.39% 98.43% - Grad-CAM B-M-N 

The proposed method   99.15% 99.23% 99.49% 99.6% 
Grad-

CAM 
B-M-N 

The proposed method  98.97% 98.82% 99.24% 98.48% 
Grad-

CAM 
B-M 

        In our experiments, the normal class was not included 

in the BUSI dataset because its corresponding mask is 

completely black (i.e., all pixel values are zero). When the 

ROI extraction method by multiplying the image with its 

mask is applied, the result is a fully black image with no 

useful features. As seen in Table 6, the maximum accuracy 

is obtained when the normal class is included and ROI is 

applied across all examples; however, this was misleading 

because the model was not genuinely learning significant 

patterns, but rather  

 detecting black images. We removed the normal class to 

ensure the model learned from informative, valid inputs. 
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Table 6: BUSI Dataset Accuracy Comparison with and 

Without (ROI and Normal) 

 

        To address class imbalance in the BUSI ultrasound 

dataset benign and malignant only, we applied the 

Synthetic Minority Over-sampling Technique (SMOTE), 

which resulted in improved classification performance. As 

shown in Table 7, all key metrics, including accuracy, 

precision, recall, and F1-score, showed measurable 

improvement after applying SMOTE. For the MRI dataset, 

however, SMOTE yielded no significant change, as the 

class distribution was more balanced and the baseline 

performance was already saturated. 

 

Table 7: The Effect of SMOTE on BUSI Dataset. 

Metric 
BUSI Without 

SMOTE 

BUSI With 

SMOTE 

Accuracy 97.94% 98.97% 

Precision 97.63% 98.44% 

Recall 97.63% 99.24% 

F1-score 97.63% 98.82% 

 

        As mentioned previously, the MRI dataset had an 

ROC-AUC of 99.9 for both classes, and the BUSI dataset 

had an ROC-AUC score of 99.95 for both classes, as 

shown in Figures 6 and 7, respectively. 

 
Figure 6:  ROC-AUC Using MRI Dataset. 

Figure 7: ROC-AUC Using BUSI Dataset 

       Figure 8 present the confusion matrix of the proposed 

model using BUSI. The confusion matrix for the BUSI 

dataset shows that the model performed exceptionally well 

in distinguishing between benign and malignant cases, 

with almost no errors. This indicates that the model can 

confidently detect critical conditions with high precision. 

The clear separation of predictions suggests strong 

reliability for medical diagnosis tasks. 

 
Figure 8: Confusion Matrix of The Classification Model 

for the BUSI Dataset 

        Figure 9 presents the confusion matrix of the 

proposed model using MRI. The MRI dataset results reveal 

nearly perfect classification, with the model correctly 

identifying both healthy and sick cases with remarkable 

consistency. Such performance reflects the model’s 

robustness and its ability to generalize well across different 

medical imaging data. It reinforces trust in the model’s 

practical deployment for real-world clinical use. 

 
Figure 9: Confusion Matrix of The Classification Model 

for the MRI Dataset 

 With ROI Without ROI 

Without Normal 98.97% 86.6% 

With Normal 99.15% 93.16% 
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Discussion and Analysis:  

        The study introduced a powerful and efficient deep 

learning framework for breast cancer classification,  

using both ultrasound and MRI data. It demonstrates that 

our EfficientNetV2B0-based model, paired with SMOTE, 

ROI (for BUSI), and Grad-CAM, is an effective tool for 

diagnosing breast cancer. The high accuracy of 98.97% for 

BUSI and 99.55% for MRI, along with low error rates and 

fast processing, demonstrates its reliability and efficiency. 

For the BUSI dataset, ROI boosted precision by 5.8% (as 

seen in Figure 10) by focusing on tumor-specific features 

and cutting out distractions. SMOTE made the model more 

sensitive to rare cancer cases, while Grad-CAM built trust 

by showing doctors exactly what the AI was focusing on. 

 
Figure 10: BUSI Dataset Accuracy Comparison Between 

Models Trained with And Without Region of Interest 

(ROI) Technique, Under Two Situations with and Without 

the Normal Class. 

        The normal class was excluded from the data set 

because it showed no pathological results and was 

therefore irrelevant for distinguishing between benign and 

malignant tumors. Furthermore, in the case of using an 

ROI, normal images are poorer because their masks are 

literally empty (zero values). When element-wise 

multiplication is applied with such a mask, the entire 

image is suppressed, rendering it unsuitable for training.  

Moreover, normal images are less effective due to their 

zero-valued masks, which lead to suppression. This 

outcome validates the effectiveness of our preprocessing 

approach, which mitigates the suppression problem caused 

by zero-valued masks in normal images. 

        The application of SMOTE was particularly effective 

for the BUSI ultrasound dataset, where it contributed to 

measurable gains in classification performance. 

Improvements in accuracy, precision, recall, and F1-score 

were observed, confirming that addressing class imbalance 

through synthetic oversampling improved the model's 

ability to detect patterns in the minority class. In contrast, 

the MRI dataset showed negligible improvement with 

SMOTE, likely due to its more balanced class distribution 

and the model’s ability to learn discriminative features 

without additional synthetic samples. These results 

highlight the importance of tailoring preprocessing 

strategies to the characteristics of each dataset. 

        However, using the BUSI and MRI datasets helps 

generalize to different imaging procedures, using ROI for 

BUSI only, while the MRI dataset did not apply ROI 

extraction because segmentation masks were not available, 

making our study suitable for both types of data, with and 

without segmentation masks. The use of Region of Interest 

(ROI) segmentation masks was applied to datasets with 

ground-truth annotations, enabling us to isolate and 

emphasize diagnostically relevant areas during 

preprocessing. However, our method was also designed to 

operate effectively on datasets without segmentation 

masks by processing the full image. This dual capability 

demonstrates the flexibility of our approach, allowing it to 

generalize well across diverse clinical scenarios, both with 

and without ROI annotations, while maintaining strong 

classification performance. While SMOTE and ROI 

reduce dataset-specific biases, external validation across 
many institutional datasets is required to ensure broader 

application. Furthermore, Grad-CAM improves 

interpretability; its heatmaps require radiological expertise 

for accurate clinical translation. The BUSI dataset might 

not reflect all real-world ultrasound variations (like 

different patient demographics or imaging setups), thus, 

more diverse breast cancer data is needed, like an MRI 

dataset. Although Grad-CAM is helpful for interpreting 

the heatmaps of the outcomes, it is not considered a 

replacement for clinicians. The Grad-CAM plays as a 

supporting technique for them. Figure 11 shows examples 

from both datasets

Figure 11: Grad-CAM Heatmap Outcome for Both Datasets. 

 

Benigne BUSI Malignant BUSI 

Malignant MRI Benigne MRI 
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CONCLUSION 

        This work demonstrates the effectiveness of an 

EfficientNetV2B0-based deep learning model in 

accurately diagnosing breast cancer using both ultrasound 

and MRI images. The model achieved a test accuracy of 

98.97% on the BUSI dataset and 99.55% on the MRI 

dataset, with ROC-AUC scores of 99.95 and 99.9, 

respectively. These results were made possible by 

integrating three core strategies: SMOTE for addressing 

class imbalance, ROI extraction was used only for the 

BUSI dataset to improve image focus and clarity, and 

Grad-CAM for enhancing interpretability by linking 

predictions to meaningful visual cues.  

        The model consistently produced minimal prediction 

errors, indicating robustness and clinical reliability. Using 

transfer learning and mindful preprocessing, this technique 

provides a quick, accurate, and explainable detection tool 

for breast cancer screening that is well-suited for use in 

real-world medical settings, including resource-

constrained settings. This technology provides a highly 

accurate, interpretable, and strong solution for breast 

cancer detection, ready to help specialists in real-world 

settings with precision and transparency. 

Limitations and Future Direction: 

        While existing studies have demonstrated strong 

performance in breast ultrasound classification, certain 

limitations remain. Many rely on limited ultrasound 

datasets that the Model is not tested on 

Doppler/elastography, test them which could provide 

greater diagnostic value and improve robustness in real-

world clinical environments. Moreover, explainable AI 

(XAI) techniques are rarely employed only Luong et al. 

(2024) and Jabeen et al. (2024) explicitly applied them, as 

shown in Table 5. In response, our approach integrates 

Grad-CAM to enhance transparency, with future work 

exploring additional XAI methods like LIME and SHAP 

for broader interpretability. Planned directions also 

include evaluating the system on larger, more diverse 

datasets, integrating it into real-time ultrasound platforms, 

and potentially combining it with mammography for a 

more comprehensive diagnostic pipeline. Clinical 

validation and the expansion to multi-modal imaging will 

be essential to ensure the generalizability and practical 

impact of this work in breast cancer screening. 
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